TU Darmstadt / ULB / TUbiblio

A Streamlined Method for Sourcing Discourse-level Argumentation Annotations from the Crowd

Miller, Tristan ; Sukhareva, Maria ; Gurevych, Iryna (2019)
A Streamlined Method for Sourcing Discourse-level Argumentation Annotations from the Crowd.
The 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2019). Minneapolis, USA (02.10.2019-07.10.2019)
doi: 10.18653/v1/N19-1177
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The study of argumentation and the development of argument mining tools depends on the availability of annotated data, which is challenging to obtain in sufficient quantity and quality. We present a method that breaks down a popular but relatively complex discourse-level argument annotation scheme into a simpler, iterative procedure that can be applied even by untrained annotators. We apply this method in a crowdsourcing setup and report on the reliability of the annotations obtained. The source code for a tool implementing our annotation method, as well as the sample data we obtained (4909 gold-standard annotations across 982 documents), are freely released to the research community. These are intended to serve the needs of qualitative research into argumentation, as well as of data-driven approaches to argument mining.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Miller, Tristan ; Sukhareva, Maria ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: A Streamlined Method for Sourcing Discourse-level Argumentation Annotations from the Crowd
Sprache: Englisch
Publikationsjahr: 27 Februar 2019
Ort: Minneapolis, Minnesota
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2019)
Veranstaltungstitel: The 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2019)
Veranstaltungsort: Minneapolis, USA
Veranstaltungsdatum: 02.10.2019-07.10.2019
DOI: 10.18653/v1/N19-1177
URL / URN: https://aclanthology.org/N19-1177
Zugehörige Links:
Kurzbeschreibung (Abstract):

The study of argumentation and the development of argument mining tools depends on the availability of annotated data, which is challenging to obtain in sufficient quantity and quality. We present a method that breaks down a popular but relatively complex discourse-level argument annotation scheme into a simpler, iterative procedure that can be applied even by untrained annotators. We apply this method in a crowdsourcing setup and report on the reliability of the annotations obtained. The source code for a tool implementing our annotation method, as well as the sample data we obtained (4909 gold-standard annotations across 982 documents), are freely released to the research community. These are intended to serve the needs of qualitative research into argumentation, as well as of data-driven approaches to argument mining.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 18 Sep 2019 12:12
Letzte Änderung: 11 Jun 2024 07:11
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen