TU Darmstadt / ULB / TUbiblio

What do Deep Networks Like to Read?

Pfeiffer, Jonas ; Kamath, Aishwarya ; Gurevych, Iryna ; Ruder, Sebastian (2019)
What do Deep Networks Like to Read?
doi: 10.48550/arXiv.1909.04547
Report, Bibliographie

Kurzbeschreibung (Abstract)

Recent research towards understanding neural networks probes models in a top-down manner, but is only able to identify model tendencies that are known a priori. We propose Susceptibility Identification through Fine-Tuning (SIFT), a novel abstractive method that uncovers a model's preferences without imposing any prior. By fine-tuning an autoencoder with the gradients from a fixed classifier, we are able to extract propensities that characterize different kinds of classifiers in a bottom-up manner. We further leverage the SIFT architecture to rephrase sentences in order to predict the opposing class of the ground truth label, uncovering potential artifacts encoded in the fixed classification model. We evaluate our method on three diverse tasks with four different models. We contrast the propensities of the models as well as reproduce artifacts reported in the literature.

Typ des Eintrags: Report
Erschienen: 2019
Autor(en): Pfeiffer, Jonas ; Kamath, Aishwarya ; Gurevych, Iryna ; Ruder, Sebastian
Art des Eintrags: Bibliographie
Titel: What do Deep Networks Like to Read?
Sprache: Englisch
Publikationsjahr: 11 September 2019
Verlag: arXiv
Reihe: Computation and Language
Kollation: 13 Seiten
DOI: 10.48550/arXiv.1909.04547
URL / URN: https://arxiv.org/abs/1909.04547
Kurzbeschreibung (Abstract):

Recent research towards understanding neural networks probes models in a top-down manner, but is only able to identify model tendencies that are known a priori. We propose Susceptibility Identification through Fine-Tuning (SIFT), a novel abstractive method that uncovers a model's preferences without imposing any prior. By fine-tuning an autoencoder with the gradients from a fixed classifier, we are able to extract propensities that characterize different kinds of classifiers in a bottom-up manner. We further leverage the SIFT architecture to rephrase sentences in order to predict the opposing class of the ground truth label, uncovering potential artifacts encoded in the fixed classification model. We evaluate our method on three diverse tasks with four different models. We contrast the propensities of the models as well as reproduce artifacts reported in the literature.

Zusätzliche Informationen:

1.Version

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 13 Sep 2019 07:27
Letzte Änderung: 19 Dez 2024 08:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen