Zhao, Wei ; Peyrard, Maxime ; Liu, Fei ; Gao, Yang ; Meyer, Christian M. ; Eger, Steffen (2019)
MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance.
The 2019 Conference on Empirical Methods in Natural Language Processing. Hong Kong, China (03.11.2019-07.11.2019)
doi: 10.18653/v1/D19-1053
Konferenzveröffentlichung, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
A robust evaluation metric has a profound impact on the development of text generation systems. A desirable metric compares system output against references based on their semantics rather than surface forms. In this paper we investigate strategies to encode system and reference texts to devise a metric that shows a high correlation with human judgment of text quality. We validate our new metric, namely MoverScore, on a number of text generation tasks including summarization, machine translation, image captioning, and data-to-text generation, where the outputs are produced by a variety of neural and non-neural systems. Our findings suggest that metrics combining contextualized representations with a distance measure perform the best. Such metrics also demonstrate strong generalization capability across tasks. For ease-of-use we make our metrics available as web service.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2019 |
Autor(en): | Zhao, Wei ; Peyrard, Maxime ; Liu, Fei ; Gao, Yang ; Meyer, Christian M. ; Eger, Steffen |
Art des Eintrags: | Bibliographie |
Titel: | MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance |
Sprache: | Englisch |
Publikationsjahr: | 14 August 2019 |
Ort: | Hong Kong, China |
Verlag: | Association for Computational Linguistics |
Buchtitel: | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
Veranstaltungstitel: | The 2019 Conference on Empirical Methods in Natural Language Processing |
Veranstaltungsort: | Hong Kong, China |
Veranstaltungsdatum: | 03.11.2019-07.11.2019 |
DOI: | 10.18653/v1/D19-1053 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | A robust evaluation metric has a profound impact on the development of text generation systems. A desirable metric compares system output against references based on their semantics rather than surface forms. In this paper we investigate strategies to encode system and reference texts to devise a metric that shows a high correlation with human judgment of text quality. We validate our new metric, namely MoverScore, on a number of text generation tasks including summarization, machine translation, image captioning, and data-to-text generation, where the outputs are produced by a variety of neural and non-neural systems. Our findings suggest that metrics combining contextualized representations with a distance measure perform the best. Such metrics also demonstrate strong generalization capability across tasks. For ease-of-use we make our metrics available as web service. |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung DFG-Graduiertenkollegs DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen |
Hinterlegungsdatum: | 11 Sep 2019 12:13 |
Letzte Änderung: | 29 Mai 2024 07:52 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance. (deposited 15 Aug 2019 11:42)
- MoverScore: Text Generation Evaluating with Contextualized Embeddings and Earth Mover Distance. (deposited 11 Sep 2019 12:13) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |