Bahari, M. H. ; Hamaidi, L. K. ; Muma, M. ; Plata-Chaves, J. ; Moonen, M. ; Zoubir, A. M. ; Bertrand, A. (2017)
Distributed Multi-Speaker Voice Activity Detection for Wireless Acoustic Sensor Networks.
Report, Bibliographie
Kurzbeschreibung (Abstract)
A distributed multi-speaker voice activity detection (DM-VAD) method for wireless acoustic sensor networks (WASNs) is proposed. DM-VAD is required in many signal processing applications, e.g. distributed speech enhancement based on multi-channel Wiener filtering, but is non-existent up to date. The proposed method neither requires a fusion center nor prior knowledge about the node positions, microphone array orientations or the number of observed sources. It consists of two steps: (i) distributed source-specific energy signal unmixing (ii) energy signal based voice activity detection. Existing computationally efficient methods to extract source-specific energy signals from the mixed observations, e.g., multiplicative non-negative independent component analysis (MNICA) quickly loose performance with an increasing number of sources, and require a fusion center. To overcome these limitations, we introduce a distributed energy signal unmixing method based on a source-specific node clustering method to locate the nodes around each source. To determine the number of sources that are observed in the WASN, a source enumeration method that uses a Lasso penalized Poisson generalized linear model is developed. Each identified cluster estimates the energy signal of a single (dominant) source by applying a two-component MNICA. The VAD problem is transformed into a clustering task, by extracting features from the energy signals and applying K-means type clustering algorithms. All steps of the proposed method are evaluated using numerical experiments. A VAD accuracy of >85% is achieved for a challenging scenario where 20 nodes observe 7 sources in a simulated reverberant rectangular room.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2017 |
Autor(en): | Bahari, M. H. ; Hamaidi, L. K. ; Muma, M. ; Plata-Chaves, J. ; Moonen, M. ; Zoubir, A. M. ; Bertrand, A. |
Art des Eintrags: | Bibliographie |
Titel: | Distributed Multi-Speaker Voice Activity Detection for Wireless Acoustic Sensor Networks |
Sprache: | Englisch |
Publikationsjahr: | 16 März 2017 |
Verlag: | arXiv |
URL / URN: | https://arxiv.org/abs/1703.05782 |
Kurzbeschreibung (Abstract): | A distributed multi-speaker voice activity detection (DM-VAD) method for wireless acoustic sensor networks (WASNs) is proposed. DM-VAD is required in many signal processing applications, e.g. distributed speech enhancement based on multi-channel Wiener filtering, but is non-existent up to date. The proposed method neither requires a fusion center nor prior knowledge about the node positions, microphone array orientations or the number of observed sources. It consists of two steps: (i) distributed source-specific energy signal unmixing (ii) energy signal based voice activity detection. Existing computationally efficient methods to extract source-specific energy signals from the mixed observations, e.g., multiplicative non-negative independent component analysis (MNICA) quickly loose performance with an increasing number of sources, and require a fusion center. To overcome these limitations, we introduce a distributed energy signal unmixing method based on a source-specific node clustering method to locate the nodes around each source. To determine the number of sources that are observed in the WASN, a source enumeration method that uses a Lasso penalized Poisson generalized linear model is developed. Each identified cluster estimates the energy signal of a single (dominant) source by applying a two-component MNICA. The VAD problem is transformed into a clustering task, by extracting features from the energy signals and applying K-means type clustering algorithms. All steps of the proposed method are evaluated using numerical experiments. A VAD accuracy of >85% is achieved for a challenging scenario where 20 nodes observe 7 sources in a simulated reverberant rectangular room. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) |
Hinterlegungsdatum: | 20 Aug 2019 05:42 |
Letzte Änderung: | 19 Dez 2024 08:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |