TU Darmstadt / ULB / TUbiblio

DBPal: Weak Supervision for Learning a Natural Language Interface to Databases

Weir, Nathaniel ; Crotty, Andrew ; Galakatos, Alex ; Ilkhechi, Amir ; Ramaswamy, Shekar ; Bhushan, Rohin ; Cetintemel, Ugur ; Utama, Prasetya ; Geisler, Nadja ; Hättasch, Benjamin ; Eger, Steffen ; Binnig, Carsten (2019)
DBPal: Weak Supervision for Learning a Natural Language Interface to Databases.
1st International Workshop on Conversational Access to Data (CAST) in conj. with the 45th International Conference on Very Large Data Bases (VLDB). Los Angeles, California, USA
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper describes DBPal, a new system to translate natural language utterances into SQL statements using a neural machine translation model. While other recent approaches use neural machine translation to implement a Natural Language Interface to Databases (NLIDB), existing techniques rely on supervised learning with manually curated training data, which results in substantial overhead for supporting each new database schema. In order to avoid this issue, DBPal implements a novel training pipeline based on weak supervision that synthesizes all training data from a given database schema. In our evaluation, we show that DBPal can outperform existing rule-based NLIDBs while achieving comparable performance to other NLIDBs that leverage deep neural network models without relying on manually curated training data for every new database schema.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Weir, Nathaniel ; Crotty, Andrew ; Galakatos, Alex ; Ilkhechi, Amir ; Ramaswamy, Shekar ; Bhushan, Rohin ; Cetintemel, Ugur ; Utama, Prasetya ; Geisler, Nadja ; Hättasch, Benjamin ; Eger, Steffen ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: DBPal: Weak Supervision for Learning a Natural Language Interface to Databases
Sprache: Englisch
Publikationsjahr: 30 August 2019
Ort: Los Angeles, California, USA
Veranstaltungstitel: 1st International Workshop on Conversational Access to Data (CAST) in conj. with the 45th International Conference on Very Large Data Bases (VLDB)
Veranstaltungsort: Los Angeles, California, USA
Kurzbeschreibung (Abstract):

This paper describes DBPal, a new system to translate natural language utterances into SQL statements using a neural machine translation model. While other recent approaches use neural machine translation to implement a Natural Language Interface to Databases (NLIDB), existing techniques rely on supervised learning with manually curated training data, which results in substantial overhead for supporting each new database schema. In order to avoid this issue, DBPal implements a novel training pipeline based on weak supervision that synthesizes all training data from a given database schema. In our evaluation, we show that DBPal can outperform existing rule-based NLIDBs while achieving comparable performance to other NLIDBs that leverage deep neural network models without relying on manually curated training data for every new database schema.

Freie Schlagworte: dm, dm_nlidb, dm_dbpal
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data Management (2022 umbenannt in Data and AI Systems)
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 24 Jul 2019 13:17
Letzte Änderung: 21 Apr 2020 15:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen