Schmelzle, Sebastian ; Blüthgen, Nico (2019)
Under pressure: force resistance measurements in box mites (Actinotrichida, Oribatida).
In: Frontiers in zoology, 16
doi: 10.1186/s12983-019-0325-x
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Background
Mechanical defenses are very common and diverse in prey species, for example in oribatid mites. Here, the probably most complex form of morphological defense is known as ptychoidy, that enables the animals to completely retract the appendages into a secondary cavity and encapsulate themselves. The two groups of ptychoid mites constituting the Ptyctima, i.e. Euphthiracaroidea and Phthiracaroidea, have a hardened cuticle and are well protected against similar sized predators. Euphthiracaroidea additionally feature predator-repelling secretions. Since both taxa evolved within the glandulate group of Oribatida, the question remains why Phthiracaroidea lost this additional protection. In earlier predation bioassays, chemically disarmed specimens of Euphthiracaroidea were cracked by the staphylinid beetle , whereas equally sized specimens of Phthiracaroidea survived. We thus hypothesized that Phthiracaroidea can withstand significantly more force than Euphthiracaroidea and that the specific body form in each group is key in understanding the loss of chemical defense in Phthiracaroidea. To measure force resistance, we adapted the principle of machines applying compressive forces for very small animals and tested the two ptyctimous taxa as well as the soft-bodied mite .
Results
Some Phthiracaroidea individuals sustained about 560,000 times their body weight. Their mean resistance was about three times higher, and their mean breaking point in relation to body weight nearly two times higher than Euphthiracaroidea individuals. The breaking point increased with body weight and differed significantly between the two taxa. Across taxa, the absolute force resistance increased sublinearly (with a 0.781 power term) with the animal's body weight. Force resistance of was inferior in all tests (about half that of Euphthiracaroidea after accounting for body weight). As an important determinant of mechanical resistance in ptychoid mites, the individuals' cuticle thickness increased sublinearly with body diameter and body mass as well and did not differ significantly between the taxa.
Conclusion
We showed the feasibility of the force resistance measurement method, and our results were consistent with the hypothesis that Phthiracaroidea compensated its lack of chemical secretions by a heavier mechanical resistance based on a different body form and associated build-up of hemolymph pressure (defensive trade-off).
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Schmelzle, Sebastian ; Blüthgen, Nico |
Art des Eintrags: | Bibliographie |
Titel: | Under pressure: force resistance measurements in box mites (Actinotrichida, Oribatida). |
Sprache: | Englisch |
Publikationsjahr: | 4 Juli 2019 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Frontiers in zoology |
Jahrgang/Volume einer Zeitschrift: | 16 |
DOI: | 10.1186/s12983-019-0325-x |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Background Mechanical defenses are very common and diverse in prey species, for example in oribatid mites. Here, the probably most complex form of morphological defense is known as ptychoidy, that enables the animals to completely retract the appendages into a secondary cavity and encapsulate themselves. The two groups of ptychoid mites constituting the Ptyctima, i.e. Euphthiracaroidea and Phthiracaroidea, have a hardened cuticle and are well protected against similar sized predators. Euphthiracaroidea additionally feature predator-repelling secretions. Since both taxa evolved within the glandulate group of Oribatida, the question remains why Phthiracaroidea lost this additional protection. In earlier predation bioassays, chemically disarmed specimens of Euphthiracaroidea were cracked by the staphylinid beetle , whereas equally sized specimens of Phthiracaroidea survived. We thus hypothesized that Phthiracaroidea can withstand significantly more force than Euphthiracaroidea and that the specific body form in each group is key in understanding the loss of chemical defense in Phthiracaroidea. To measure force resistance, we adapted the principle of machines applying compressive forces for very small animals and tested the two ptyctimous taxa as well as the soft-bodied mite . Results Some Phthiracaroidea individuals sustained about 560,000 times their body weight. Their mean resistance was about three times higher, and their mean breaking point in relation to body weight nearly two times higher than Euphthiracaroidea individuals. The breaking point increased with body weight and differed significantly between the two taxa. Across taxa, the absolute force resistance increased sublinearly (with a 0.781 power term) with the animal's body weight. Force resistance of was inferior in all tests (about half that of Euphthiracaroidea after accounting for body weight). As an important determinant of mechanical resistance in ptychoid mites, the individuals' cuticle thickness increased sublinearly with body diameter and body mass as well and did not differ significantly between the taxa. Conclusion We showed the feasibility of the force resistance measurement method, and our results were consistent with the hypothesis that Phthiracaroidea compensated its lack of chemical secretions by a heavier mechanical resistance based on a different body form and associated build-up of hemolymph pressure (defensive trade-off). |
ID-Nummer: | pmid:31312228 |
Fachbereich(e)/-gebiet(e): | 10 Fachbereich Biologie 10 Fachbereich Biologie > Ecological Networks |
Hinterlegungsdatum: | 23 Jul 2019 06:08 |
Letzte Änderung: | 03 Jul 2024 02:39 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Under pressure: force resistance measurements in box mites (Actinotrichida, Oribatida). (deposited 20 Okt 2019 19:55)
- Under pressure: force resistance measurements in box mites (Actinotrichida, Oribatida). (deposited 23 Jul 2019 06:08) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |