TU Darmstadt / ULB / TUbiblio

What can a single minutia tell about gender?

Terhörst, Philipp ; Damer, Naser ; Braun, Andreas ; Kuijper, Arjan (2018)
What can a single minutia tell about gender?
International Workshop on Biometrics and Forensics (IWBF). Sassari, Italy (07.06.2018-08.06.2018)
doi: 10.1109/IWBF.2018.8401554
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Since fingerprints are one of the most widely deployed biometrics, several applications can benefit from an accurate fingerprint gender estimation. Previous work mainly tackled the task of gender estimation based on complete fingerprints. However, partial fingerprint captures are frequently occurring in many applications including forensics and consumer electronics, with the considered ratio of the fingerprint is variable. Therefore, this work investigates gender estimation on a small, detectable, and well-defined partition of a fingerprint. It investigates gender estimation on the level of a single minutia. Working on this level, we propose a feature extraction process that is able to deal with the rotation and translation invariance problems of fingerprints. This is evaluated on a publicly available database and with five different binary classifiers. As a result, the information of a single minutia achieves a comparable accuracy on the gender classification task as previous work using quarters of aligned fingerprints with an average of more than 25 minutiae.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Terhörst, Philipp ; Damer, Naser ; Braun, Andreas ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: What can a single minutia tell about gender?
Sprache: Englisch
Publikationsjahr: 2018
Ort: Los Alamitos
Verlag: IEEE
Buchtitel: 2018 International Workshop on Biometrics and Forensics (IWBF)
Veranstaltungstitel: International Workshop on Biometrics and Forensics (IWBF)
Veranstaltungsort: Sassari, Italy
Veranstaltungsdatum: 07.06.2018-08.06.2018
DOI: 10.1109/IWBF.2018.8401554
URL / URN: https://doi.org/10.1109/IWBF.2018.8401554
Kurzbeschreibung (Abstract):

Since fingerprints are one of the most widely deployed biometrics, several applications can benefit from an accurate fingerprint gender estimation. Previous work mainly tackled the task of gender estimation based on complete fingerprints. However, partial fingerprint captures are frequently occurring in many applications including forensics and consumer electronics, with the considered ratio of the fingerprint is variable. Therefore, this work investigates gender estimation on a small, detectable, and well-defined partition of a fingerprint. It investigates gender estimation on the level of a single minutia. Working on this level, we propose a feature extraction process that is able to deal with the rotation and translation invariance problems of fingerprints. This is evaluated on a publicly available database and with five different binary classifiers. As a result, the information of a single minutia achieves a comparable accuracy on the gender classification task as previous work using quarters of aligned fingerprints with an average of more than 25 minutiae.

Freie Schlagworte: Biometrics, Image classification, Object class detection
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 10 Jul 2019 12:12
Letzte Änderung: 05 Jul 2024 06:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen