Bernard, Jürgen ; Zeppelzauer, Matthias ; Sedlmair, Michael ; Aigner, Wolfgang (2018)
VIAL: a unified process for visual interactive labeling.
In: The Visual Computer, 34 (9)
doi: 10.1007/s00371-018-1500-3
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The assignment of labels to data instances is a fundamental prerequisite for many machine learning tasks. Moreover, labeling is a frequently applied process in visual interactive analysis approaches and visual analytics. However, the strategies for creating labels usually differ between these two fields. This raises the question whether synergies between the different approaches can be attained. In this paper, we study the process of labeling data instances with the user in the loop, from both the machine learning and visual interactive perspective. Based on a review of differences and commonalities, we propose the "visual interactive labeling" (VIAL) process that unifies both approaches.We describe the six major steps of the process and discuss their specific challenges. Additionally, we present two heterogeneous usage scenarios from the novel VIAL perspective, one on metric distance learning and one on object detection in videos. Finally, we discuss general challenges to VIAL and point out necessary work for the realization of future VIAL approaches.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2018 |
Autor(en): | Bernard, Jürgen ; Zeppelzauer, Matthias ; Sedlmair, Michael ; Aigner, Wolfgang |
Art des Eintrags: | Bibliographie |
Titel: | VIAL: a unified process for visual interactive labeling |
Sprache: | Englisch |
Publikationsjahr: | 2018 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | The Visual Computer |
Jahrgang/Volume einer Zeitschrift: | 34 |
(Heft-)Nummer: | 9 |
DOI: | 10.1007/s00371-018-1500-3 |
URL / URN: | https://doi.org/10.1007/s00371-018-1500-3 |
Kurzbeschreibung (Abstract): | The assignment of labels to data instances is a fundamental prerequisite for many machine learning tasks. Moreover, labeling is a frequently applied process in visual interactive analysis approaches and visual analytics. However, the strategies for creating labels usually differ between these two fields. This raises the question whether synergies between the different approaches can be attained. In this paper, we study the process of labeling data instances with the user in the loop, from both the machine learning and visual interactive perspective. Based on a review of differences and commonalities, we propose the "visual interactive labeling" (VIAL) process that unifies both approaches.We describe the six major steps of the process and discuss their specific challenges. Additionally, we present two heterogeneous usage scenarios from the novel VIAL perspective, one on metric distance learning and one on object detection in videos. Finally, we discuss general challenges to VIAL and point out necessary work for the realization of future VIAL approaches. |
Freie Schlagworte: | Information visualization, Visual analytics, Machine learning, Labeling, Active learning, Classifications, Similarity search |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 10 Jul 2019 11:33 |
Letzte Änderung: | 10 Jul 2019 11:33 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |