TU Darmstadt / ULB / TUbiblio

Influence of SiC/Silica and Carbon/Silica Interfaces on the High-Temperature Creep of Silicon Oxycarbide-Based Glass Ceramics: A Case Study

Stabler, Christina ; Schliephake, Daniel ; Heilmaier, Martin ; Rouxel, Tanguy ; Kleebe, Hans-Joachim ; Narisawa, Masaki ; Riedel, Ralf ; Ionescu, Emanuel (2019)
Influence of SiC/Silica and Carbon/Silica Interfaces on the High-Temperature Creep of Silicon Oxycarbide-Based Glass Ceramics: A Case Study.
In: Advanced Engineering Materials, 21 (6)
doi: 10.1002/adem.201800596
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In the present study, the high-temperature creep behavior of three SiOC glass ceramics with different phase compositions are compared by the authors. All three SiOC glass ceramics have a vitreous silica matrix in common, but comprise different homogeneously dispersed phases: 1) only spherical beta-SiC nanoparticles (sample denoted hereafter SiC/SiO2), 2) only high-aspect ratio sp(2)-hybridized carbon (i.e., C/SiO2), and 3) both phases (SiC and segregated carbon, i.e., C/SiC/SiO2). Compression creep experiments are performed at temperatures in the range between 1100 and 1300 degrees C and true stresses of 50 to 200 MPa. The determined activation energy for creep of the SiOC glass ceramics of around 700 kJ mol(-1) is independent of the phase composition. A stress exponent value of approximately 2 indicates an interface-controlled deformation mechanism. All SiOC glass ceramics exhibit significantly higher creep viscosities than that of vitreous silica. Surprisingly, the spherical beta-SiC nanoparticles have a higher impact on the effective creep viscosities of SiOC as compared to that of the high-aspect ratio segregated carbon phase. It is concluded that this originates from the beta-SiC/silica and C/silica interfaces, which have different effects on the creep behavior of silicon oxycarbide-based glass ceramics.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Stabler, Christina ; Schliephake, Daniel ; Heilmaier, Martin ; Rouxel, Tanguy ; Kleebe, Hans-Joachim ; Narisawa, Masaki ; Riedel, Ralf ; Ionescu, Emanuel
Art des Eintrags: Bibliographie
Titel: Influence of SiC/Silica and Carbon/Silica Interfaces on the High-Temperature Creep of Silicon Oxycarbide-Based Glass Ceramics: A Case Study
Sprache: Englisch
Publikationsjahr: Juni 2019
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 6
DOI: 10.1002/adem.201800596
URL / URN: https://onlinelibrary.wiley.com/doi/full/10.1002/adem.201800...
Kurzbeschreibung (Abstract):

In the present study, the high-temperature creep behavior of three SiOC glass ceramics with different phase compositions are compared by the authors. All three SiOC glass ceramics have a vitreous silica matrix in common, but comprise different homogeneously dispersed phases: 1) only spherical beta-SiC nanoparticles (sample denoted hereafter SiC/SiO2), 2) only high-aspect ratio sp(2)-hybridized carbon (i.e., C/SiO2), and 3) both phases (SiC and segregated carbon, i.e., C/SiC/SiO2). Compression creep experiments are performed at temperatures in the range between 1100 and 1300 degrees C and true stresses of 50 to 200 MPa. The determined activation energy for creep of the SiOC glass ceramics of around 700 kJ mol(-1) is independent of the phase composition. A stress exponent value of approximately 2 indicates an interface-controlled deformation mechanism. All SiOC glass ceramics exhibit significantly higher creep viscosities than that of vitreous silica. Surprisingly, the spherical beta-SiC nanoparticles have a higher impact on the effective creep viscosities of SiOC as compared to that of the high-aspect ratio segregated carbon phase. It is concluded that this originates from the beta-SiC/silica and C/silica interfaces, which have different effects on the creep behavior of silicon oxycarbide-based glass ceramics.

Freie Schlagworte: Glass ceramics, high-temperature creep, interface-controlled creep, interfaces, silicon oxycarbide, polymer-derived ceramics, mechanical characterization, structural-characterization, failure mechanisms, stress-relaxation, metallic-galss, SIOC glass, behavior, viscosity, carbon
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 10 Jul 2019 05:23
Letzte Änderung: 18 Aug 2021 09:48
PPN:
Projekte: Deutsche Forschungsgemeinschaft: IO 64/7-1, HE 1872/30-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen