Stabler, Christina ; Schliephake, Daniel ; Heilmaier, Martin ; Rouxel, Tanguy ; Kleebe, Hans-Joachim ; Narisawa, Masaki ; Riedel, Ralf ; Ionescu, Emanuel (2019)
Influence of SiC/Silica and Carbon/Silica Interfaces on the High-Temperature Creep of Silicon Oxycarbide-Based Glass Ceramics: A Case Study.
In: Advanced Engineering Materials, 21 (6)
doi: 10.1002/adem.201800596
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In the present study, the high-temperature creep behavior of three SiOC glass ceramics with different phase compositions are compared by the authors. All three SiOC glass ceramics have a vitreous silica matrix in common, but comprise different homogeneously dispersed phases: 1) only spherical beta-SiC nanoparticles (sample denoted hereafter SiC/SiO2), 2) only high-aspect ratio sp(2)-hybridized carbon (i.e., C/SiO2), and 3) both phases (SiC and segregated carbon, i.e., C/SiC/SiO2). Compression creep experiments are performed at temperatures in the range between 1100 and 1300 degrees C and true stresses of 50 to 200 MPa. The determined activation energy for creep of the SiOC glass ceramics of around 700 kJ mol(-1) is independent of the phase composition. A stress exponent value of approximately 2 indicates an interface-controlled deformation mechanism. All SiOC glass ceramics exhibit significantly higher creep viscosities than that of vitreous silica. Surprisingly, the spherical beta-SiC nanoparticles have a higher impact on the effective creep viscosities of SiOC as compared to that of the high-aspect ratio segregated carbon phase. It is concluded that this originates from the beta-SiC/silica and C/silica interfaces, which have different effects on the creep behavior of silicon oxycarbide-based glass ceramics.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Stabler, Christina ; Schliephake, Daniel ; Heilmaier, Martin ; Rouxel, Tanguy ; Kleebe, Hans-Joachim ; Narisawa, Masaki ; Riedel, Ralf ; Ionescu, Emanuel |
Art des Eintrags: | Bibliographie |
Titel: | Influence of SiC/Silica and Carbon/Silica Interfaces on the High-Temperature Creep of Silicon Oxycarbide-Based Glass Ceramics: A Case Study |
Sprache: | Englisch |
Publikationsjahr: | Juni 2019 |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Engineering Materials |
Jahrgang/Volume einer Zeitschrift: | 21 |
(Heft-)Nummer: | 6 |
DOI: | 10.1002/adem.201800596 |
URL / URN: | https://onlinelibrary.wiley.com/doi/full/10.1002/adem.201800... |
Kurzbeschreibung (Abstract): | In the present study, the high-temperature creep behavior of three SiOC glass ceramics with different phase compositions are compared by the authors. All three SiOC glass ceramics have a vitreous silica matrix in common, but comprise different homogeneously dispersed phases: 1) only spherical beta-SiC nanoparticles (sample denoted hereafter SiC/SiO2), 2) only high-aspect ratio sp(2)-hybridized carbon (i.e., C/SiO2), and 3) both phases (SiC and segregated carbon, i.e., C/SiC/SiO2). Compression creep experiments are performed at temperatures in the range between 1100 and 1300 degrees C and true stresses of 50 to 200 MPa. The determined activation energy for creep of the SiOC glass ceramics of around 700 kJ mol(-1) is independent of the phase composition. A stress exponent value of approximately 2 indicates an interface-controlled deformation mechanism. All SiOC glass ceramics exhibit significantly higher creep viscosities than that of vitreous silica. Surprisingly, the spherical beta-SiC nanoparticles have a higher impact on the effective creep viscosities of SiOC as compared to that of the high-aspect ratio segregated carbon phase. It is concluded that this originates from the beta-SiC/silica and C/silica interfaces, which have different effects on the creep behavior of silicon oxycarbide-based glass ceramics. |
Freie Schlagworte: | Glass ceramics, high-temperature creep, interface-controlled creep, interfaces, silicon oxycarbide, polymer-derived ceramics, mechanical characterization, structural-characterization, failure mechanisms, stress-relaxation, metallic-galss, SIOC glass, behavior, viscosity, carbon |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe |
Hinterlegungsdatum: | 10 Jul 2019 05:23 |
Letzte Änderung: | 18 Aug 2021 09:48 |
PPN: | |
Projekte: | Deutsche Forschungsgemeinschaft: IO 64/7-1, HE 1872/30-1 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |