Walther, Jessica ; Spanier, Dario ; Panten, Niklas ; Abele, Eberhard (2019)
Very Short-Term Load Forecasting on Factory Level — A Machine Learning Approach.
In: Procedia CIRP, 26th CIRP Conference on Life Cycle Engineering Purdue University, West Lafayette, IN (USA), 80
doi: 10.1016/j.procir.2019.01.060
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In the context of energy transition in Germany, precise load forecasting enables reducing the impact of increased volatility in power generation induced by renewable energies. This paper presents a machine learning approach to generate a 15 minutes forecasting model of the electric load for the ETA research factory at TU Darmstadt on a factory level. In the first iteration, a feature selection process was conducted to select significant features for machine learning datasets. The raw data contained 1,554 features from machine tools, technical building equipment, the building itself and external factors like the weather. The second iteration examined the forecasting capabilities of six hyperparameter tuned algorithms on the feature selected datasets. In the third iteration, feature engineering and hyperparameter tuning led to an optimized Gradient Boosting Regression Trees (GBRT) algorithm. The results indicate that the utilized machine learning approach is feasible and creates a precise very short term load forecasting model, depending on the use case of the load forecast.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Walther, Jessica ; Spanier, Dario ; Panten, Niklas ; Abele, Eberhard |
Art des Eintrags: | Bibliographie |
Titel: | Very Short-Term Load Forecasting on Factory Level — A Machine Learning Approach |
Sprache: | Englisch |
Publikationsjahr: | 2019 |
Verlag: | Elsevier B.V. |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Procedia CIRP, 26th CIRP Conference on Life Cycle Engineering Purdue University, West Lafayette, IN (USA) |
Jahrgang/Volume einer Zeitschrift: | 80 |
DOI: | 10.1016/j.procir.2019.01.060 |
Kurzbeschreibung (Abstract): | In the context of energy transition in Germany, precise load forecasting enables reducing the impact of increased volatility in power generation induced by renewable energies. This paper presents a machine learning approach to generate a 15 minutes forecasting model of the electric load for the ETA research factory at TU Darmstadt on a factory level. In the first iteration, a feature selection process was conducted to select significant features for machine learning datasets. The raw data contained 1,554 features from machine tools, technical building equipment, the building itself and external factors like the weather. The second iteration examined the forecasting capabilities of six hyperparameter tuned algorithms on the feature selected datasets. In the third iteration, feature engineering and hyperparameter tuning led to an optimized Gradient Boosting Regression Trees (GBRT) algorithm. The results indicate that the utilized machine learning approach is feasible and creates a precise very short term load forecasting model, depending on the use case of the load forecast. |
Freie Schlagworte: | Load forecasting, machine learning, feature selection, feature engineering, Gradient Boosting Regression Trees |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > ETA Energietechnologien und Anwendungen in der Produktion |
Hinterlegungsdatum: | 09 Jul 2019 05:47 |
Letzte Änderung: | 09 Jul 2019 05:47 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |