TU Darmstadt / ULB / TUbiblio

Very Short-Term Load Forecasting on Factory Level — A Machine Learning Approach

Walther, Jessica ; Spanier, Dario ; Panten, Niklas ; Abele, Eberhard (2019)
Very Short-Term Load Forecasting on Factory Level — A Machine Learning Approach.
In: Procedia CIRP, 26th CIRP Conference on Life Cycle Engineering Purdue University, West Lafayette, IN (USA), 80
doi: 10.1016/j.procir.2019.01.060
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In the context of energy transition in Germany, precise load forecasting enables reducing the impact of increased volatility in power generation induced by renewable energies. This paper presents a machine learning approach to generate a 15 minutes forecasting model of the electric load for the ETA research factory at TU Darmstadt on a factory level. In the first iteration, a feature selection process was conducted to select significant features for machine learning datasets. The raw data contained 1,554 features from machine tools, technical building equipment, the building itself and external factors like the weather. The second iteration examined the forecasting capabilities of six hyperparameter tuned algorithms on the feature selected datasets. In the third iteration, feature engineering and hyperparameter tuning led to an optimized Gradient Boosting Regression Trees (GBRT) algorithm. The results indicate that the utilized machine learning approach is feasible and creates a precise very short term load forecasting model, depending on the use case of the load forecast.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Walther, Jessica ; Spanier, Dario ; Panten, Niklas ; Abele, Eberhard
Art des Eintrags: Bibliographie
Titel: Very Short-Term Load Forecasting on Factory Level — A Machine Learning Approach
Sprache: Englisch
Publikationsjahr: 2019
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP, 26th CIRP Conference on Life Cycle Engineering Purdue University, West Lafayette, IN (USA)
Jahrgang/Volume einer Zeitschrift: 80
DOI: 10.1016/j.procir.2019.01.060
Kurzbeschreibung (Abstract):

In the context of energy transition in Germany, precise load forecasting enables reducing the impact of increased volatility in power generation induced by renewable energies. This paper presents a machine learning approach to generate a 15 minutes forecasting model of the electric load for the ETA research factory at TU Darmstadt on a factory level. In the first iteration, a feature selection process was conducted to select significant features for machine learning datasets. The raw data contained 1,554 features from machine tools, technical building equipment, the building itself and external factors like the weather. The second iteration examined the forecasting capabilities of six hyperparameter tuned algorithms on the feature selected datasets. In the third iteration, feature engineering and hyperparameter tuning led to an optimized Gradient Boosting Regression Trees (GBRT) algorithm. The results indicate that the utilized machine learning approach is feasible and creates a precise very short term load forecasting model, depending on the use case of the load forecast.

Freie Schlagworte: Load forecasting, machine learning, feature selection, feature engineering, Gradient Boosting Regression Trees
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > ETA Energietechnologien und Anwendungen in der Produktion
Hinterlegungsdatum: 09 Jul 2019 05:47
Letzte Änderung: 09 Jul 2019 05:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen