TU Darmstadt / ULB / TUbiblio

OFAI–UKP at HAHA@IberLEF2019: Predicting the Humorousness of Tweets Using Gaussian Process Preference Learning

Miller, Tristan ; Do Dinh, Erik-Lân ; Simpson, Edwin ; Gurevych, Iryna (2019)
OFAI–UKP at HAHA@IberLEF2019: Predicting the Humorousness of Tweets Using Gaussian Process Preference Learning.
Bilbao, Spain
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Most humour processing systems to date make at best discrete, coarse-grained distinctions between the comical and the conventional, yet such notions are better conceptualized as a broad spectrum. In this paper, we present a probabilistic approach, a variant of Gaussian process preference learning (GPPL), that learns to rank and rate the humorousness of short texts by exploiting human preference judgments and automatically sourced linguistic annotations. We apply our system, which had previously shown good performance on English-language one-liners annotated with pairwise humorousness annotations, to the Spanish-language data set of the HAHA@IberLEF2019 evaluation campaign. We report system performance for the campaign's two subtasks, humour detection and funniness score prediction, and discuss some issues arising from the conversion between the numeric scores used in the HAHA@IberLEF2019 data and the pairwise judgment annotations required for our method.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Miller, Tristan ; Do Dinh, Erik-Lân ; Simpson, Edwin ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: OFAI–UKP at HAHA@IberLEF2019: Predicting the Humorousness of Tweets Using Gaussian Process Preference Learning
Sprache: Englisch
Publikationsjahr: 24 September 2019
Ort: Bilbao, Spain
Buchtitel: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019)
Reihe: CEUR Workshop Proceedings
Veranstaltungsort: Bilbao, Spain
URL / URN: http://ceur-ws.org/Vol-2421/HAHA_paper_6.pdf
Zugehörige Links:
Kurzbeschreibung (Abstract):

Most humour processing systems to date make at best discrete, coarse-grained distinctions between the comical and the conventional, yet such notions are better conceptualized as a broad spectrum. In this paper, we present a probabilistic approach, a variant of Gaussian process preference learning (GPPL), that learns to rank and rate the humorousness of short texts by exploiting human preference judgments and automatically sourced linguistic annotations. We apply our system, which had previously shown good performance on English-language one-liners annotated with pairwise humorousness annotations, to the Spanish-language data set of the HAHA@IberLEF2019 evaluation campaign. We report system performance for the campaign's two subtasks, humour detection and funniness score prediction, and discuss some issues arising from the conversion between the numeric scores used in the HAHA@IberLEF2019 data and the pairwise judgment annotations required for our method.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 09 Jul 2019 09:57
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen