TU Darmstadt / ULB / TUbiblio

P-Score: Performance Aligned Normalization and an Evaluation in Score-Level Multi-Biometric Fusion

Damer, Naser ; Boutros, Fadi ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan (2018)
P-Score: Performance Aligned Normalization and an Evaluation in Score-Level Multi-Biometric Fusion.
European Signal Processing Conference (EUSIPCO). Rome, Italy
doi: 10.23919/EUSIPCO.2018.8553553
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Normalization is an important step for different fusion, classification, and decision making applications. Previous normalization approaches considered bringing values from different sources into a common range or distribution characteristics. In this work we propose a new normalization approach that transfers values into a normalized space where their relative performance in binary decision making is aligned across their whole range. Multi-biometric verification is a typical problem where information from different sources are normalized and fused to make a binary decision and therefore a good platform to evaluate the proposed normalization.We conducted an evaluation on two publicly available databases and showed that the normalization solution we are proposing consistently outperformed state-of-the-art and best practice approaches, e.g. by reducing the false rejection rate at 0.01% false acceptance rate by 60- 75% compared to the widely used z-score normalization under the sum-rule fusion.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Damer, Naser ; Boutros, Fadi ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: P-Score: Performance Aligned Normalization and an Evaluation in Score-Level Multi-Biometric Fusion
Sprache: Englisch
Publikationsjahr: 2018
Ort: Los Alamitos
Verlag: IEEE
Buchtitel: 2018 26th European Signal Processing Conference (EUSIPCO)
Veranstaltungstitel: European Signal Processing Conference (EUSIPCO)
Veranstaltungsort: Rome, Italy
DOI: 10.23919/EUSIPCO.2018.8553553
URL / URN: https://doi.org/10.23919/EUSIPCO.2018.8553553
Kurzbeschreibung (Abstract):

Normalization is an important step for different fusion, classification, and decision making applications. Previous normalization approaches considered bringing values from different sources into a common range or distribution characteristics. In this work we propose a new normalization approach that transfers values into a normalized space where their relative performance in binary decision making is aligned across their whole range. Multi-biometric verification is a typical problem where information from different sources are normalized and fused to make a binary decision and therefore a good platform to evaluate the proposed normalization.We conducted an evaluation on two publicly available databases and showed that the normalization solution we are proposing consistently outperformed state-of-the-art and best practice approaches, e.g. by reducing the false rejection rate at 0.01% false acceptance rate by 60- 75% compared to the widely used z-score normalization under the sum-rule fusion.

Freie Schlagworte: Multibiometrics, Information fusion, Biometric fusion, Biometrics
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 01 Jul 2019 08:47
Letzte Änderung: 27 Feb 2023 11:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen