TU Darmstadt / ULB / TUbiblio

A Feature-Based Model for the Identification of Electrical Devices in Smart Environments

Tundis, Andrea ; Faizan, Ali ; Mühlhäuser, Max (2019)
A Feature-Based Model for the Identification of Electrical Devices in Smart Environments.
In: Sensors, 19 (11)
doi: 10.3390/s19112611
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Smart Homes (SHs) represent the human side of a Smart Grid (SG). Data mining and analysis of energy data of electrical devices in SHs, e.g., for the dynamic load management, is of fundamental importance for the decision-making process of energy management both from the consumer perspective by saving money and also in terms of energy redistribution and reduction of the carbon dioxide emission, by knowing how the energy demand of a building is composed in the SG. Advanced monitoring and control mechanisms are necessary to deal with the identification of appliances. In this paper, a model for their automatic identification is proposed. It is based on a set of 19 features that are extracted by analyzing energy consumption, time usage and location from a set of device profiles. Then, machine learning approaches are employed by experimenting different classifiers based on such model for the identification of appliances and, finally, an analysis on the feature importance is provided.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Tundis, Andrea ; Faizan, Ali ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: A Feature-Based Model for the Identification of Electrical Devices in Smart Environments
Sprache: Englisch
Publikationsjahr: 8 Juni 2019
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sensors
Jahrgang/Volume einer Zeitschrift: 19
(Heft-)Nummer: 11
Kollation: 20 Seiten
DOI: 10.3390/s19112611
URL / URN: https://www.mdpi.com/1424-8220/19/11/2611
Zugehörige Links:
Kurzbeschreibung (Abstract):

Smart Homes (SHs) represent the human side of a Smart Grid (SG). Data mining and analysis of energy data of electrical devices in SHs, e.g., for the dynamic load management, is of fundamental importance for the decision-making process of energy management both from the consumer perspective by saving money and also in terms of energy redistribution and reduction of the carbon dioxide emission, by knowing how the energy demand of a building is composed in the SG. Advanced monitoring and control mechanisms are necessary to deal with the identification of appliances. In this paper, a model for their automatic identification is proposed. It is based on a set of 19 features that are extracted by analyzing energy consumption, time usage and location from a set of device profiles. Then, machine learning approaches are employed by experimenting different classifiers based on such model for the identification of appliances and, finally, an analysis on the feature importance is provided.

Zusätzliche Informationen:

Art.No.: 2611; Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 01 Jul 2019 08:39
Letzte Änderung: 04 Dez 2023 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen