TU Darmstadt / ULB / TUbiblio

Leveraging eye-gaze and time-series features to predict user interests and build a recommendation model for visual analysis

Silva, Nelson ; Schreck, Tobias ; Veas, Eduardo ; Sabol, Vedran ; Eggeling, Eva ; Fellner, Dieter W. (2018)
Leveraging eye-gaze and time-series features to predict user interests and build a recommendation model for visual analysis.
ACM Symposium on Eye Tracking Research & Applications (ETRA). Warsaw, Poland (14.06.2018-17.06.2018)
doi: 10.1145/3204493.3204546
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We developed a new concept to improve the efficiency of visual analysis through visual recommendations. It uses a novel eye-gaze based recommendation model that aids users in identifying interesting time-series patterns. Our model combines time-series features and eye-gaze interests, captured via an eye-tracker. Mouse selections are also considered. The system provides an overlay visualization with recommended patterns, and an eye-history graph, that supports the users in the data exploration process. We conducted an experiment with 5 tasks where 30 participants explored sensor data of a wind turbine. This work presents results on pre-attentive features, and discusses the precision/recall of our model in comparison to final selections made by users. Our model helps users to efficiently identify interesting time-series patterns.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Silva, Nelson ; Schreck, Tobias ; Veas, Eduardo ; Sabol, Vedran ; Eggeling, Eva ; Fellner, Dieter W.
Art des Eintrags: Bibliographie
Titel: Leveraging eye-gaze and time-series features to predict user interests and build a recommendation model for visual analysis
Sprache: Englisch
Publikationsjahr: 2018
Ort: New York, NY
Verlag: ACM
Buchtitel: Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications - ETRA '18
Veranstaltungstitel: ACM Symposium on Eye Tracking Research & Applications (ETRA)
Veranstaltungsort: Warsaw, Poland
Veranstaltungsdatum: 14.06.2018-17.06.2018
DOI: 10.1145/3204493.3204546
URL / URN: https://doi.org/10.1145/3204493.3204546
Kurzbeschreibung (Abstract):

We developed a new concept to improve the efficiency of visual analysis through visual recommendations. It uses a novel eye-gaze based recommendation model that aids users in identifying interesting time-series patterns. Our model combines time-series features and eye-gaze interests, captured via an eye-tracker. Mouse selections are also considered. The system provides an overlay visualization with recommended patterns, and an eye-history graph, that supports the users in the data exploration process. We conducted an experiment with 5 tasks where 30 participants explored sensor data of a wind turbine. This work presents results on pre-attentive features, and discusses the precision/recall of our model in comparison to final selections made by users. Our model helps users to efficiently identify interesting time-series patterns.

Freie Schlagworte: Evaluation, Human-centered computing, Visual analytics, Recommender systems, Eye tracking
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 01 Jul 2019 08:46
Letzte Änderung: 03 Jul 2024 10:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen