TU Darmstadt / ULB / TUbiblio

Pitfalls in the Evaluation of Sentence Embeddings

Eger, Steffen ; Rücklé, Andreas ; Gurevych, Iryna (2019)
Pitfalls in the Evaluation of Sentence Embeddings.
The 4th Workshop on Representation Learning for NLP (Repl4NLP 2019). Florence, Italy (02.08.2019-02.08.2019)
doi: 10.18653/v1/W19-4308
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Deep learning models continuously break new records across different NLP tasks. At the same time, their success exposes weaknesses of model evaluation. Here, we compile several key pitfalls of evaluation of sentence embeddings, a currently very popular NLP paradigm. These pitfalls include the comparison of embeddings of different sizes, normalization of embeddings, and the low (and diverging) correlations between transfer and probing tasks. Our motivation is to challenge the current evaluation of sentence embeddings and to provide an easy-to-access reference for future research. Based on our insights, we also recommend better practices for better future evaluations of sentence embeddings.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Eger, Steffen ; Rücklé, Andreas ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Pitfalls in the Evaluation of Sentence Embeddings
Sprache: Englisch
Publikationsjahr: 5 Juni 2019
Ort: Florence, Italy
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)
Veranstaltungstitel: The 4th Workshop on Representation Learning for NLP (Repl4NLP 2019)
Veranstaltungsort: Florence, Italy
Veranstaltungsdatum: 02.08.2019-02.08.2019
DOI: 10.18653/v1/W19-4308
URL / URN: https://www.aclweb.org/anthology/W19-4308
Zugehörige Links:
Kurzbeschreibung (Abstract):

Deep learning models continuously break new records across different NLP tasks. At the same time, their success exposes weaknesses of model evaluation. Here, we compile several key pitfalls of evaluation of sentence embeddings, a currently very popular NLP paradigm. These pitfalls include the comparison of embeddings of different sizes, normalization of embeddings, and the low (and diverging) correlations between transfer and probing tasks. Our motivation is to challenge the current evaluation of sentence embeddings and to provide an easy-to-access reference for future research. Based on our insights, we also recommend better practices for better future evaluations of sentence embeddings.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 28 Jun 2019 06:42
Letzte Änderung: 05 Jun 2024 07:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen