TU Darmstadt / ULB / TUbiblio

Histograms of Gaussian normal distribution for 3D feature matching in cluttered scenes

Zhou, Wei ; Ma, Caiwen ; Yao, Tong ; Chang, Peng ; Zhang, Qi ; Kuijper, Arjan (2019)
Histograms of Gaussian normal distribution for 3D feature matching in cluttered scenes.
In: The Visual Computer, 35 (4)
doi: 10.1007/s00371-018-1478-x
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

3D feature descriptors provide essential information to find given models in captured scenes. In practical applications, these scenes often contain clutter. This imposes severe challenges on the 3D object recognition leading to feature mismatches between scenes and models. As such errors are not fully addressed by the existing methods, 3D feature matching still remains a largely unsolved problem. We therefore propose our Histograms of Gaussian Normal Distribution (HGND) for capturing salient feature information on a local reference frame (LRF) that enables us to solve this problem. We define a LRF on each local surface patch by using the eigenvectors of the scatter matrix. Different from the traditional local LRF-based methods, our HGND descriptor is based on the combination of geometrical and spatial information without calculating the distribution of every point and its geometrical information in a local domain. This makes it both simple and efficient. We encode the HGND descriptors in a histogram by the geometrical projected distribution of the normal vectors. These vectors are based on the spatial distribution of the points.We use three public benchmarks, the Bologna, the UWA and the Ca’ Foscari Venezia dataset, to evaluate the speed, robustness, and descriptiveness of our approach. Our experiments demonstrate that the HGND is fast and obtains a more reliable matching rate than state-of-the-art approaches in cluttered situations.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Zhou, Wei ; Ma, Caiwen ; Yao, Tong ; Chang, Peng ; Zhang, Qi ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Histograms of Gaussian normal distribution for 3D feature matching in cluttered scenes
Sprache: Englisch
Publikationsjahr: 2019
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Visual Computer
Jahrgang/Volume einer Zeitschrift: 35
(Heft-)Nummer: 4
DOI: 10.1007/s00371-018-1478-x
URL / URN: https://doi.org/10.1007/s00371-018-1478-x
Kurzbeschreibung (Abstract):

3D feature descriptors provide essential information to find given models in captured scenes. In practical applications, these scenes often contain clutter. This imposes severe challenges on the 3D object recognition leading to feature mismatches between scenes and models. As such errors are not fully addressed by the existing methods, 3D feature matching still remains a largely unsolved problem. We therefore propose our Histograms of Gaussian Normal Distribution (HGND) for capturing salient feature information on a local reference frame (LRF) that enables us to solve this problem. We define a LRF on each local surface patch by using the eigenvectors of the scatter matrix. Different from the traditional local LRF-based methods, our HGND descriptor is based on the combination of geometrical and spatial information without calculating the distribution of every point and its geometrical information in a local domain. This makes it both simple and efficient. We encode the HGND descriptors in a histogram by the geometrical projected distribution of the normal vectors. These vectors are based on the spatial distribution of the points.We use three public benchmarks, the Bologna, the UWA and the Ca’ Foscari Venezia dataset, to evaluate the speed, robustness, and descriptiveness of our approach. Our experiments demonstrate that the HGND is fast and obtains a more reliable matching rate than state-of-the-art approaches in cluttered situations.

Freie Schlagworte: Feature matching, Partial 3D model retrieval, 3D Model reconstruction, Shape matching
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 26 Jun 2019 11:43
Letzte Änderung: 26 Jun 2019 11:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen