TU Darmstadt / ULB / TUbiblio

Fingerprint and Iris Multi-Biometric Data Indexing and Retrieval

Damer, Naser ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan (2018)
Fingerprint and Iris Multi-Biometric Data Indexing and Retrieval.
International Conference on Information Fusion (FUSION). Cambridge, UK (10.07.2018-13.07.2018)
doi: 10.23919/ICIF.2018.8455390
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Indexing of multi-biometric data is required to facilitatefast search in large-scale biometric systems. Previous worksaddressing this issue in multi-biometric databases focused onmulti-instance indexing, mainly iris data. Few works addressedthe indexing in multi-modal databases, with basic candidate listfusion solutions limited to joining face and fingerprint data. Irisand fingerprint are widely used in large-scale biometric systemswhere fast retrieval is a significant issue. This work proposes jointmulti-biometric retrieval solution based on fingerprint and irisdata. This solution is evaluated under eight different candidatelist fusion approaches with variable complexity on a databaseof 10,000 reference and probe records of irises and fingerprints.Our proposed multi-biometric retrieval of fingerprint and irisdata resulted in a reduction of the miss rate (1- hit rate) at 0.1%penetration rate by 93% compared to fingerprint indexing and88% compared to iris indexing.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Damer, Naser ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Fingerprint and Iris Multi-Biometric Data Indexing and Retrieval
Sprache: Englisch
Publikationsjahr: 2018
Ort: Los Alamitos
Verlag: IEEE
Buchtitel: 2018 21st International Conference on Information Fusion (FUSION)
Veranstaltungstitel: International Conference on Information Fusion (FUSION)
Veranstaltungsort: Cambridge, UK
Veranstaltungsdatum: 10.07.2018-13.07.2018
DOI: 10.23919/ICIF.2018.8455390
URL / URN: https://doi.org/10.23919/ICIF.2018.8455390
Kurzbeschreibung (Abstract):

Indexing of multi-biometric data is required to facilitatefast search in large-scale biometric systems. Previous worksaddressing this issue in multi-biometric databases focused onmulti-instance indexing, mainly iris data. Few works addressedthe indexing in multi-modal databases, with basic candidate listfusion solutions limited to joining face and fingerprint data. Irisand fingerprint are widely used in large-scale biometric systemswhere fast retrieval is a significant issue. This work proposes jointmulti-biometric retrieval solution based on fingerprint and irisdata. This solution is evaluated under eight different candidatelist fusion approaches with variable complexity on a databaseof 10,000 reference and probe records of irises and fingerprints.Our proposed multi-biometric retrieval of fingerprint and irisdata resulted in a reduction of the miss rate (1- hit rate) at 0.1%penetration rate by 93% compared to fingerprint indexing and88% compared to iris indexing.

Freie Schlagworte: Biometrics, Multibiometrics, Indexing
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 26 Jun 2019 11:47
Letzte Änderung: 03 Jul 2024 10:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen