Damer, Naser ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan (2018)
Fingerprint and Iris Multi-Biometric Data Indexing and Retrieval.
International Conference on Information Fusion (FUSION). Cambridge, UK (10.07.2018-13.07.2018)
doi: 10.23919/ICIF.2018.8455390
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Indexing of multi-biometric data is required to facilitatefast search in large-scale biometric systems. Previous worksaddressing this issue in multi-biometric databases focused onmulti-instance indexing, mainly iris data. Few works addressedthe indexing in multi-modal databases, with basic candidate listfusion solutions limited to joining face and fingerprint data. Irisand fingerprint are widely used in large-scale biometric systemswhere fast retrieval is a significant issue. This work proposes jointmulti-biometric retrieval solution based on fingerprint and irisdata. This solution is evaluated under eight different candidatelist fusion approaches with variable complexity on a databaseof 10,000 reference and probe records of irises and fingerprints.Our proposed multi-biometric retrieval of fingerprint and irisdata resulted in a reduction of the miss rate (1- hit rate) at 0.1%penetration rate by 93% compared to fingerprint indexing and88% compared to iris indexing.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2018 |
Autor(en): | Damer, Naser ; Terhörst, Philipp ; Braun, Andreas ; Kuijper, Arjan |
Art des Eintrags: | Bibliographie |
Titel: | Fingerprint and Iris Multi-Biometric Data Indexing and Retrieval |
Sprache: | Englisch |
Publikationsjahr: | 2018 |
Ort: | Los Alamitos |
Verlag: | IEEE |
Buchtitel: | 2018 21st International Conference on Information Fusion (FUSION) |
Veranstaltungstitel: | International Conference on Information Fusion (FUSION) |
Veranstaltungsort: | Cambridge, UK |
Veranstaltungsdatum: | 10.07.2018-13.07.2018 |
DOI: | 10.23919/ICIF.2018.8455390 |
URL / URN: | https://doi.org/10.23919/ICIF.2018.8455390 |
Kurzbeschreibung (Abstract): | Indexing of multi-biometric data is required to facilitatefast search in large-scale biometric systems. Previous worksaddressing this issue in multi-biometric databases focused onmulti-instance indexing, mainly iris data. Few works addressedthe indexing in multi-modal databases, with basic candidate listfusion solutions limited to joining face and fingerprint data. Irisand fingerprint are widely used in large-scale biometric systemswhere fast retrieval is a significant issue. This work proposes jointmulti-biometric retrieval solution based on fingerprint and irisdata. This solution is evaluated under eight different candidatelist fusion approaches with variable complexity on a databaseof 10,000 reference and probe records of irises and fingerprints.Our proposed multi-biometric retrieval of fingerprint and irisdata resulted in a reduction of the miss rate (1- hit rate) at 0.1%penetration rate by 93% compared to fingerprint indexing and88% compared to iris indexing. |
Freie Schlagworte: | Biometrics, Multibiometrics, Indexing |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 26 Jun 2019 11:47 |
Letzte Änderung: | 03 Jul 2024 10:42 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |