TU Darmstadt / ULB / TUbiblio

Feature Fusion Information Statistics for feature matching in cluttered scenes

Zhou, Wei ; Ma, Caiwen ; Liao, Shenghui ; Shi, Jinjing ; Yao, Tong ; Chang, Peng ; Kuijper, Arjan (2018)
Feature Fusion Information Statistics for feature matching in cluttered scenes.
In: Computers & Graphics, 77
doi: 10.1016/j.cag.2018.09.012
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Object recognizing in cluttered scenes remains a largely unsolved problem, especially when applying feature matching to cluttered scenes there are many feature mismatches between the scenes and models. We propose our Feature Fusion Information Statistics (FFIS) as the calculation framework for extracting salient information from a Local Surface Patch (LSP) by a Local Reference Frame (LRF). Our LRF is defined on each LSP by projecting the scatter matrix’s eigenvectors to a plane which is perpendicular to the normal of the LSP. Based on this, our FFIS descriptor of each LSP is calculated, for which we use the combined distribution of mesh and point information in a local domain. Finally, we evaluate the speed, robustness and descriptiveness of our FFIS with the state-of-the-art methods on several public benchmarks. Our experiments show that our FFIS is fast and obtains a more reliable matching rate than other approaches in cluttered situations.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Zhou, Wei ; Ma, Caiwen ; Liao, Shenghui ; Shi, Jinjing ; Yao, Tong ; Chang, Peng ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Feature Fusion Information Statistics for feature matching in cluttered scenes
Sprache: Englisch
Publikationsjahr: 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computers & Graphics
Jahrgang/Volume einer Zeitschrift: 77
DOI: 10.1016/j.cag.2018.09.012
URL / URN: https://doi.org/10.1016/j.cag.2018.09.012
Kurzbeschreibung (Abstract):

Object recognizing in cluttered scenes remains a largely unsolved problem, especially when applying feature matching to cluttered scenes there are many feature mismatches between the scenes and models. We propose our Feature Fusion Information Statistics (FFIS) as the calculation framework for extracting salient information from a Local Surface Patch (LSP) by a Local Reference Frame (LRF). Our LRF is defined on each LSP by projecting the scatter matrix’s eigenvectors to a plane which is perpendicular to the normal of the LSP. Based on this, our FFIS descriptor of each LSP is calculated, for which we use the combined distribution of mesh and point information in a local domain. Finally, we evaluate the speed, robustness and descriptiveness of our FFIS with the state-of-the-art methods on several public benchmarks. Our experiments show that our FFIS is fast and obtains a more reliable matching rate than other approaches in cluttered situations.

Freie Schlagworte: Partial 3D model retrieval, 3D Modeling, Feature selection, Feature matching
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 26 Jun 2019 11:42
Letzte Änderung: 26 Jun 2019 11:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen