TU Darmstadt / ULB / TUbiblio

An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures

Siegmund, Dirk ; Prajapati, Ashok ; Kirchbuchner, Florian ; Kuijper, Arjan (2018)
An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures.
International Workshop on Artificial Intelligence and Pattern Recognition (IWAIPR). Havana, Cuba
doi: 10.1007/978-3-030-01132-1_9
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper presents a comprehensive defect detection method for two common fabric defects groups. Most existing systems require textiles to be spread out in order to detect defects. This method can be applied when the textiles are not spread out and does not require any pre- processing. The deep learning architecture we present is based on transfer learning and localizes and recognizes cuts, holes and stain defects. Classification and localization is combined into a single system combining two different networks. The experiments this paper presents show that even without adding depth information, the network was able to distinguish between stain and shadow. This method has been successful even for textiles in voluminous shape and is less computationally intensive than other state-of-the-art methods.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Siegmund, Dirk ; Prajapati, Ashok ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures
Sprache: Englisch
Publikationsjahr: 2018
Ort: Cham
Verlag: Springer
Buchtitel: Progress in Artificial Intelligence and Pattern Recognition
Reihe: Lecture Notes in Computer Science (LNCS)
Band einer Reihe: 11047
Veranstaltungstitel: International Workshop on Artificial Intelligence and Pattern Recognition (IWAIPR)
Veranstaltungsort: Havana, Cuba
DOI: 10.1007/978-3-030-01132-1_9
URL / URN: https://doi.org/10.1007/978-3-030-01132-1_9
Kurzbeschreibung (Abstract):

This paper presents a comprehensive defect detection method for two common fabric defects groups. Most existing systems require textiles to be spread out in order to detect defects. This method can be applied when the textiles are not spread out and does not require any pre- processing. The deep learning architecture we present is based on transfer learning and localizes and recognizes cuts, holes and stain defects. Classification and localization is combined into a single system combining two different networks. The experiments this paper presents show that even without adding depth information, the network was able to distinguish between stain and shadow. This method has been successful even for textiles in voluminous shape and is less computationally intensive than other state-of-the-art methods.

Freie Schlagworte: Deep learning, Defect detection, Computer vision, Textile industry, Quality assurance
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 19 Jun 2019 11:22
Letzte Änderung: 19 Jun 2019 11:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen