Han, Xiyu ; Lv, Tao ; Song, Xiangyu ; Nie, Ting ; Liang, Huaidan ; He, Bin ; Kuijper, Arjan (2019)
An Adaptive Two-Scale Image Fusion of Visible and Infrared Images.
In: IEEE Access, 7
doi: 10.1109/ACCESS.2019.2913289
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In this paper, we proposed an adaptive two-scale image fusion method using latent low-rank representation (LatLRR). Firstly, both IR and VI images are decomposed into a two-scale representation using LatLRR to generate low-rank parts (the global structure) and saliency parts (the local structure). The algorithm denoises at the same time. Then, the guided filter is used in the saliency parts to make full use of the spatial consistency, which reduces artifacts effectively. With respect to the fusion rule of the low-rank parts, we construct adaptive weights by adopting fusion global-local-topology particle swarm optimization (FGLT-PSO) to obtain more useful information from the source images. Finally, the resulting image is reconstructed by adding the fused low-rank part and the fused saliency part. Experimental results validate that the proposed method outperforms several representative image fusion algorithms on publicly available datasets for infrared and visible image fusion in terms of subjective visual effect and objective assessment.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Han, Xiyu ; Lv, Tao ; Song, Xiangyu ; Nie, Ting ; Liang, Huaidan ; He, Bin ; Kuijper, Arjan |
Art des Eintrags: | Bibliographie |
Titel: | An Adaptive Two-Scale Image Fusion of Visible and Infrared Images |
Sprache: | Englisch |
Publikationsjahr: | 2019 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Access |
Jahrgang/Volume einer Zeitschrift: | 7 |
DOI: | 10.1109/ACCESS.2019.2913289 |
URL / URN: | https://doi.org/10.1109/ACCESS.2019.2913289 |
Kurzbeschreibung (Abstract): | In this paper, we proposed an adaptive two-scale image fusion method using latent low-rank representation (LatLRR). Firstly, both IR and VI images are decomposed into a two-scale representation using LatLRR to generate low-rank parts (the global structure) and saliency parts (the local structure). The algorithm denoises at the same time. Then, the guided filter is used in the saliency parts to make full use of the spatial consistency, which reduces artifacts effectively. With respect to the fusion rule of the low-rank parts, we construct adaptive weights by adopting fusion global-local-topology particle swarm optimization (FGLT-PSO) to obtain more useful information from the source images. Finally, the resulting image is reconstructed by adding the fused low-rank part and the fused saliency part. Experimental results validate that the proposed method outperforms several representative image fusion algorithms on publicly available datasets for infrared and visible image fusion in terms of subjective visual effect and objective assessment. |
Freie Schlagworte: | Image fusion, Infrared light, Image processing, Consistency, Spatial data |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 19 Jun 2019 11:08 |
Letzte Änderung: | 19 Jun 2019 11:08 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |