TU Darmstadt / ULB / TUbiblio

A Neural Autoencoder Approach for Document Ranking and Query Refinement in Pharmacogenomic Information Retrieval

Pfeiffer, Jonas ; Broscheit, Samuel ; Gemulla, Rainer ; Göschl, Mathias (2018)
A Neural Autoencoder Approach for Document Ranking and Query Refinement in Pharmacogenomic Information Retrieval.
Proceedings of the BioNLP 2018 workshop. Melbourne, Australia
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this study, we investigate learning-to-rank and query refinement approaches for information retrieval in the pharmacogenomic domain. The goal is to improve the information retrieval process of biomedical curators, who manually build knowledge bases for personalized medicine. We study how to exploit the relationships between genes, variants, drugs, diseases and outcomes as features for document ranking and query refinement. For a supervised approach, we are faced with a small amount of annotated data and a large amount of unannotated data. Therefore, we explore ways to use a neural document auto-encoder in a semi-supervised approach. We show that a combination of established algorithms, feature-engineering and a neural auto-encoder model yield promising results in this setting.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Pfeiffer, Jonas ; Broscheit, Samuel ; Gemulla, Rainer ; Göschl, Mathias
Art des Eintrags: Bibliographie
Titel: A Neural Autoencoder Approach for Document Ranking and Query Refinement in Pharmacogenomic Information Retrieval
Sprache: Englisch
Publikationsjahr: Juli 2018
Ort: Melbourne, Australia
Verlag: Association for Computational Linguistics
Veranstaltungstitel: Proceedings of the BioNLP 2018 workshop
Veranstaltungsort: Melbourne, Australia
URL / URN: https://www.aclweb.org/anthology/W18-2310
Kurzbeschreibung (Abstract):

In this study, we investigate learning-to-rank and query refinement approaches for information retrieval in the pharmacogenomic domain. The goal is to improve the information retrieval process of biomedical curators, who manually build knowledge bases for personalized medicine. We study how to exploit the relationships between genes, variants, drugs, diseases and outcomes as features for document ranking and query refinement. For a supervised approach, we are faced with a small amount of annotated data and a large amount of unannotated data. Therefore, we explore ways to use a neural document auto-encoder in a semi-supervised approach. We show that a combination of established algorithms, feature-engineering and a neural auto-encoder model yield promising results in this setting.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 14 Jun 2019 07:05
Letzte Änderung: 14 Jun 2019 07:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen