Bitterlich, Julian (2019)
Investigations into the Universal Algebra of Hypergraph Coverings and Applications.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
This thesis deals with two topics: acyclic covers and extension problems. The first part of the thesis deals with unbranched covers of graphs. The general theory of unbranched covers is discussed and then generalized to granular covers. Covers of this type maintain fixed structures of the covered graph. It is shown how unbranched covers of hypergraphs can be reduced to granular covers. With the help of further results we can identify the class of hypergraphs that have acyclic unbranched covers.
The second part of the paper deals with extension problems. An extension problems it is about finitely extending finite structures so that partial automorphisms of the initial structure can be completed on the extension. We discuss classical results and reformulate them so that they are suitable for an algebraic characterization. These can be used to get new results regarding extension problems.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2019 | ||||
Autor(en): | Bitterlich, Julian | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Investigations into the Universal Algebra of Hypergraph Coverings and Applications | ||||
Sprache: | Englisch | ||||
Referenten: | Otto, Prof. Dr. Martin ; Auinger, Dr. Karl ; Michael, Prof. Dr. Joswig | ||||
Publikationsjahr: | 2019 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 12 Februar 2019 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/8691 | ||||
Kurzbeschreibung (Abstract): | This thesis deals with two topics: acyclic covers and extension problems. The first part of the thesis deals with unbranched covers of graphs. The general theory of unbranched covers is discussed and then generalized to granular covers. Covers of this type maintain fixed structures of the covered graph. It is shown how unbranched covers of hypergraphs can be reduced to granular covers. With the help of further results we can identify the class of hypergraphs that have acyclic unbranched covers. The second part of the paper deals with extension problems. An extension problems it is about finitely extending finite structures so that partial automorphisms of the initial structure can be completed on the extension. We discuss classical results and reformulate them so that they are suitable for an algebraic characterization. These can be used to get new results regarding extension problems. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-86914 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Logik 04 Fachbereich Mathematik > Logik > Algorithmic Model Theory 04 Fachbereich Mathematik > Logik > Algorithmic Model Theory > Model Constructions and Decompositions |
||||
Hinterlegungsdatum: | 26 Mai 2019 19:55 | ||||
Letzte Änderung: | 26 Mai 2019 19:55 | ||||
PPN: | |||||
Referenten: | Otto, Prof. Dr. Martin ; Auinger, Dr. Karl ; Michael, Prof. Dr. Joswig | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 12 Februar 2019 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |