TU Darmstadt / ULB / TUbiblio

A Bayesian Approach for Predicting the Humorousness of One-liners

Simpson, Edwin ; Do Dinh, Erik-Lân ; Miller, Tristan ; Gurevych, Iryna (2019)
A Bayesian Approach for Predicting the Humorousness of One-liners.
2019 Conference of the International Society for Humor Studies. Austin, TX, USA (24.06.2019-28.06.2019)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Humour is an essential aspect of human communication that computational methods have yet to master. Most natural language processing systems to date make at best discrete, coarse-grained distinctions between the comical and the conventional, yet such notions are better conceptualized as a broad spectrum. We therefore introduce the novel task of automatically quantifying and ranking short texts by humorousness, and present a probabilistic approach that learns to do this by examining human preference judgments. We evaluate our system on a crowdsourced data set of nearly 30,000 pairwise comparisons of over 4000 one-liners. We find that it correlates well with best–worst scaling (BWS) when pairwise labels are abundant, and outperforms BWS when they are sparse. And unlike BWS, because our method exploits word embeddings and shallow text features, it can make accurate predictions even for previously unseen texts.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Simpson, Edwin ; Do Dinh, Erik-Lân ; Miller, Tristan ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: A Bayesian Approach for Predicting the Humorousness of One-liners
Sprache: Englisch
Publikationsjahr: 25 Juni 2019
Veranstaltungstitel: 2019 Conference of the International Society for Humor Studies
Veranstaltungsort: Austin, TX, USA
Veranstaltungsdatum: 24.06.2019-28.06.2019
Kurzbeschreibung (Abstract):

Humour is an essential aspect of human communication that computational methods have yet to master. Most natural language processing systems to date make at best discrete, coarse-grained distinctions between the comical and the conventional, yet such notions are better conceptualized as a broad spectrum. We therefore introduce the novel task of automatically quantifying and ranking short texts by humorousness, and present a probabilistic approach that learns to do this by examining human preference judgments. We evaluate our system on a crowdsourced data set of nearly 30,000 pairwise comparisons of over 4000 one-liners. We find that it correlates well with best–worst scaling (BWS) when pairwise labels are abundant, and outperforms BWS when they are sparse. And unlike BWS, because our method exploits word embeddings and shallow text features, it can make accurate predictions even for previously unseen texts.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 23 Mai 2019 13:44
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen