TU Darmstadt / ULB / TUbiblio

Collective Behavior of Chiral Active Matter: Pattern Formation and Enhanced Flocking

Liebchen, B. ; Levis, D. (2017)
Collective Behavior of Chiral Active Matter: Pattern Formation and Enhanced Flocking.
In: Physical Review Letters, 119 (5)
doi: 10.1103/PhysRevLett.119.058002
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We generalize the Vicsek model to describe the collective behavior of polar circle swimmers with local alignment interactions. While the phase transition leading to collective motion in 2D (flocking) occurs at the same interaction to noise ratio as for linear swimmers, as we show, circular motion enhances the polarization in the ordered phase (enhanced flocking) and induces secondary instabilities leading to structure formation. Slow rotations promote macroscopic droplets with late time sizes proportional to the system size (indicating phase separation) whereas fast rotations generate patterns consisting of phase synchronized microflocks with a controllable characteristic size proportional to the average single-particle swimming radius. Our results defy the viewpoint that monofrequent rotations form a vapid extension of the Vicsek model and establish a generic route to pattern formation in chiral active matter with possible applications for understanding and designing rotating microflocks.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Liebchen, B. ; Levis, D.
Art des Eintrags: Bibliographie
Titel: Collective Behavior of Chiral Active Matter: Pattern Formation and Enhanced Flocking
Sprache: Englisch
Publikationsjahr: 1 August 2017
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review Letters
Jahrgang/Volume einer Zeitschrift: 119
(Heft-)Nummer: 5
DOI: 10.1103/PhysRevLett.119.058002
Kurzbeschreibung (Abstract):

We generalize the Vicsek model to describe the collective behavior of polar circle swimmers with local alignment interactions. While the phase transition leading to collective motion in 2D (flocking) occurs at the same interaction to noise ratio as for linear swimmers, as we show, circular motion enhances the polarization in the ordered phase (enhanced flocking) and induces secondary instabilities leading to structure formation. Slow rotations promote macroscopic droplets with late time sizes proportional to the system size (indicating phase separation) whereas fast rotations generate patterns consisting of phase synchronized microflocks with a controllable characteristic size proportional to the average single-particle swimming radius. Our results defy the viewpoint that monofrequent rotations form a vapid extension of the Vicsek model and establish a generic route to pattern formation in chiral active matter with possible applications for understanding and designing rotating microflocks.

Freie Schlagworte: publiziert
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
Hinterlegungsdatum: 28 Mai 2019 05:14
Letzte Änderung: 19 Aug 2020 10:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen