TU Darmstadt / ULB / TUbiblio

Freezing, accelerating, and slowing directed currents in real time with superimposed driven lattices

Mukhopadhyay, A. K. ; Liebchen, B. ; Wulf, T. ; Schmelcher, P. (2016)
Freezing, accelerating, and slowing directed currents in real time with superimposed driven lattices.
In: Physical Review E, 93 (5)
doi: 10.1103/PhysRevE.93.052219
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We provide a generic scheme offering real-time control of directed particle transport using superimposed driven lattices. This scheme allows one to accelerate, slow, and freeze the transport on demand by switching one of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and closing of channels between transporting and nontransporting phase space structures upon switching and exploits cantori structures which generate memory effects in the population of these structures. Our results should allow for real-time control of cold thermal atomic ensembles in optical lattices but might also be useful as a design principle for targeted delivery of molecules or colloids in optical devices.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Mukhopadhyay, A. K. ; Liebchen, B. ; Wulf, T. ; Schmelcher, P.
Art des Eintrags: Bibliographie
Titel: Freezing, accelerating, and slowing directed currents in real time with superimposed driven lattices
Sprache: Englisch
Publikationsjahr: 23 Mai 2016
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review E
Jahrgang/Volume einer Zeitschrift: 93
(Heft-)Nummer: 5
DOI: 10.1103/PhysRevE.93.052219
Kurzbeschreibung (Abstract):

We provide a generic scheme offering real-time control of directed particle transport using superimposed driven lattices. This scheme allows one to accelerate, slow, and freeze the transport on demand by switching one of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and closing of channels between transporting and nontransporting phase space structures upon switching and exploits cantori structures which generate memory effects in the population of these structures. Our results should allow for real-time control of cold thermal atomic ensembles in optical lattices but might also be useful as a design principle for targeted delivery of molecules or colloids in optical devices.

Freie Schlagworte: publiziert
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
Hinterlegungsdatum: 27 Mai 2019 13:33
Letzte Änderung: 06 Dez 2021 14:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen