TU Darmstadt / ULB / TUbiblio

Membrane penetration and trapping of an active particle

Daddi-Moussa-Ider, A. ; Goh, S. ; Liebchen, B. ; Hoell, C. ; Mathijssen, A. J. T. M. ; Guzman-Lastra, F. ; Scholz, C. ; Menzel, A. M. ; Löwen, H. (2019)
Membrane penetration and trapping of an active particle.
In: Journal of Chemical Physics, 150 (6)
doi: 10.1063/1.5080807
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for both penetration and trapping. We numerically calculate the state diagram of this system, the membrane shape, and its dynamics. In this context, we show that the active particle may either get trapped near the membrane or penetrates through it, where the membrane can either be permanently destroyed or recover its initial shape by self-healing. Additionally, we systematically derive a continuum description allowing to accurately predict most of our results analytically. This analytical theory helps identifying the generic aspects of our model, suggesting that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of magnetic microparticles to lipid bilayers. Our results might be useful to predict mechanical properties of synthetic minimal membranes.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Daddi-Moussa-Ider, A. ; Goh, S. ; Liebchen, B. ; Hoell, C. ; Mathijssen, A. J. T. M. ; Guzman-Lastra, F. ; Scholz, C. ; Menzel, A. M. ; Löwen, H.
Art des Eintrags: Bibliographie
Titel: Membrane penetration and trapping of an active particle
Sprache: Englisch
Publikationsjahr: 12 Februar 2019
Verlag: American Institute of Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Chemical Physics
Jahrgang/Volume einer Zeitschrift: 150
(Heft-)Nummer: 6
DOI: 10.1063/1.5080807
Kurzbeschreibung (Abstract):

The interaction between nano- or micro-sized particles and cell membranes is of crucial importance in many biological and biomedical applications such as drug and gene delivery to cells and tissues. During their cellular uptake, the particles can pass through cell membranes via passive endocytosis or by active penetration to reach a target cellular compartment or organelle. In this manuscript, we develop a simple model to describe the interaction of a self-driven spherical particle (moving through an effective constant active force) with a minimal membrane system, allowing for both penetration and trapping. We numerically calculate the state diagram of this system, the membrane shape, and its dynamics. In this context, we show that the active particle may either get trapped near the membrane or penetrates through it, where the membrane can either be permanently destroyed or recover its initial shape by self-healing. Additionally, we systematically derive a continuum description allowing to accurately predict most of our results analytically. This analytical theory helps identifying the generic aspects of our model, suggesting that most of its ingredients should apply to a broad range of membranes, from simple model systems composed of magnetic microparticles to lipid bilayers. Our results might be useful to predict mechanical properties of synthetic minimal membranes.

Freie Schlagworte: publiziert
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
Hinterlegungsdatum: 27 Mai 2019 13:07
Letzte Änderung: 08 Dez 2021 13:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen