TU Darmstadt / ULB / TUbiblio

Pattern formation in chemically interacting active rotors with self-propulsion

Liebchen, B. ; Cates, M. E. ; Marenduzzo, D. (2016)
Pattern formation in chemically interacting active rotors with self-propulsion.
In: Soft Matter, 12 (35)
doi: 10.1039/C6SM01162D
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We demonstrate that active rotations in chemically signalling particles, such as autochemotactic E. coli close to walls, create a route for pattern formation based on a nonlinear yet deterministic instability mechanism. For slow rotations, we find a transient persistence of the uniform state, followed by a sudden formation of clusters contingent on locking of the average propulsion direction by chemotaxis. These clusters coarsen, which results in phase separation into a dense and a dilute region. Faster rotations arrest phase separation leading to a global travelling wave of rotors with synchronized roto-translational motion. Our results elucidate the physics resulting from the competition of two generic paradigms in active matter, chemotaxis and active rotations, and show that the latter provides a tool to design programmable self-assembly of active matter, for example to control coarsening.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Liebchen, B. ; Cates, M. E. ; Marenduzzo, D.
Art des Eintrags: Bibliographie
Titel: Pattern formation in chemically interacting active rotors with self-propulsion
Sprache: Englisch
Publikationsjahr: 8 August 2016
Verlag: The Royal Society of Chemistry
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Soft Matter
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 35
DOI: 10.1039/C6SM01162D
Kurzbeschreibung (Abstract):

We demonstrate that active rotations in chemically signalling particles, such as autochemotactic E. coli close to walls, create a route for pattern formation based on a nonlinear yet deterministic instability mechanism. For slow rotations, we find a transient persistence of the uniform state, followed by a sudden formation of clusters contingent on locking of the average propulsion direction by chemotaxis. These clusters coarsen, which results in phase separation into a dense and a dilute region. Faster rotations arrest phase separation leading to a global travelling wave of rotors with synchronized roto-translational motion. Our results elucidate the physics resulting from the competition of two generic paradigms in active matter, chemotaxis and active rotations, and show that the latter provides a tool to design programmable self-assembly of active matter, for example to control coarsening.

Freie Schlagworte: publiziert
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
Hinterlegungsdatum: 27 Mai 2019 13:10
Letzte Änderung: 19 Aug 2020 10:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen