Brandherm, Florian ; Wang, Lin ; Mühlhäuser, Max (2019)
A Learning-based Framework for Optimizing Service Migration in Mobile Edge Clouds.
EdgeSys. Dresden (25.03.2019-25.03.2019)
doi: 10.1145/3301418.3313939
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Mobile edge computing is gaining traction due to its ability to deliver ultra-low-latency services for mobile applications. This is achieved through a federation of edge clouds in close proximity of users. However, the intrinsic mobility of users brings a high level of dynamics to the edge environment, calling for sophisticated service migration management across the edge clouds. Previous solutions for edge service placement/migration are architecture-specific, centralized, or are based on restricted cost models. These limitations leave doubts about the practicality of these approaches due to the lack of a standardized reference model for edge clouds. In this paper, we propose a general framework for optimizing edge service migration based on reinforcement learning techniques. Using our framework, edge service migration strategies can be learned with respect to a large variety of optimization goals. Moreover, our learning-based algorithm is agnostic to the underlying architecture and resource constraints. Preliminary results show that our model-free learning-based approach can compete with model-based baselines and adapt to different objectives.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2019 |
Autor(en): | Brandherm, Florian ; Wang, Lin ; Mühlhäuser, Max |
Art des Eintrags: | Bibliographie |
Titel: | A Learning-based Framework for Optimizing Service Migration in Mobile Edge Clouds |
Sprache: | Englisch |
Publikationsjahr: | 25 März 2019 |
Verlag: | ACM |
Buchtitel: | Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking |
Veranstaltungstitel: | EdgeSys |
Veranstaltungsort: | Dresden |
Veranstaltungsdatum: | 25.03.2019-25.03.2019 |
DOI: | 10.1145/3301418.3313939 |
Kurzbeschreibung (Abstract): | Mobile edge computing is gaining traction due to its ability to deliver ultra-low-latency services for mobile applications. This is achieved through a federation of edge clouds in close proximity of users. However, the intrinsic mobility of users brings a high level of dynamics to the edge environment, calling for sophisticated service migration management across the edge clouds. Previous solutions for edge service placement/migration are architecture-specific, centralized, or are based on restricted cost models. These limitations leave doubts about the practicality of these approaches due to the lack of a standardized reference model for edge clouds. In this paper, we propose a general framework for optimizing edge service migration based on reinforcement learning techniques. Using our framework, edge service migration strategies can be learned with respect to a large variety of optimization goals. Moreover, our learning-based algorithm is agnostic to the underlying architecture and resource constraints. Preliminary results show that our model-free learning-based approach can compete with model-based baselines and adapt to different objectives. |
Freie Schlagworte: | C7 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Telekooperation DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik > Teilprojekt A1: Modellierung |
Hinterlegungsdatum: | 29 Apr 2019 06:22 |
Letzte Änderung: | 04 Sep 2019 05:31 |
PPN: | |
Projekte: | CollaborativeResearch Center (CRC) 1053—MAKI |
Sponsoren: | DFG |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |