TU Darmstadt / ULB / TUbiblio

Effect of composition and high-temperature annealing on the local deformation behavior of silicon oxycarbides

Stabler, Christina ; Celarie, Fabrice ; Rouxel, Tanguy ; Limbach, Rene ; Wondraczek, Lothar ; Riedel, Ralf ; Ionescu, Emanuel (2019)
Effect of composition and high-temperature annealing on the local deformation behavior of silicon oxycarbides.
In: Journal of the European Ceramic Society, 39 (7)
doi: 10.1016/j.jeurceramsoc.2019.02.024
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Silicon oxycarbides with varying compositions were investigated concerning their elastic and plastic properties. Additionally, the impact of thermal annealing on their elastic properties was assessed. Phase separation of SiOC seems to have no significant impact on Young's modulus (high values of beta-SiC compensate the low values of the vitreous silica matrix) and hardness. However, it leads to an increase in Poisson's ratio, indicating an increase in the atomic packing density. The phase composition of SiOC significantly influences Young's modulus, hardness, brittleness and strain-rate sensitivity: the amount of both beta-SiC and segregated carbon governs Young's modulus and hardness, whereas the fraction of free carbon determines brittleness and strain-rate sensitivity. Thermal annealing of SiOC glass-ceramics leads to an increase in Young's modulus. However, the temperature sensitivity of Young's modulus and Poisson's ratio is not affected, indicating the glassy matrix being stable during thermal annealing. A slightly improved ordering of the segregated carbon and the beta-SiC nanoparticles upon thermal annealing was observed. It is suggested that this is responsible for the increase in Young's modulus.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Stabler, Christina ; Celarie, Fabrice ; Rouxel, Tanguy ; Limbach, Rene ; Wondraczek, Lothar ; Riedel, Ralf ; Ionescu, Emanuel
Art des Eintrags: Bibliographie
Titel: Effect of composition and high-temperature annealing on the local deformation behavior of silicon oxycarbides
Sprache: Englisch
Publikationsjahr: Juli 2019
Verlag: Elsevier Science Ltd, England
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the European Ceramic Society
Jahrgang/Volume einer Zeitschrift: 39
(Heft-)Nummer: 7
DOI: 10.1016/j.jeurceramsoc.2019.02.024
URL / URN: https://www.sciencedirect.com/science/article/abs/pii/S09552...
Kurzbeschreibung (Abstract):

Silicon oxycarbides with varying compositions were investigated concerning their elastic and plastic properties. Additionally, the impact of thermal annealing on their elastic properties was assessed. Phase separation of SiOC seems to have no significant impact on Young's modulus (high values of beta-SiC compensate the low values of the vitreous silica matrix) and hardness. However, it leads to an increase in Poisson's ratio, indicating an increase in the atomic packing density. The phase composition of SiOC significantly influences Young's modulus, hardness, brittleness and strain-rate sensitivity: the amount of both beta-SiC and segregated carbon governs Young's modulus and hardness, whereas the fraction of free carbon determines brittleness and strain-rate sensitivity. Thermal annealing of SiOC glass-ceramics leads to an increase in Young's modulus. However, the temperature sensitivity of Young's modulus and Poisson's ratio is not affected, indicating the glassy matrix being stable during thermal annealing. A slightly improved ordering of the segregated carbon and the beta-SiC nanoparticles upon thermal annealing was observed. It is suggested that this is responsible for the increase in Young's modulus.

Freie Schlagworte: Silicon oxycarbide; Elastic properties; Poisson's ratio; Plastic deformation; Thermal annealing STRAIN-RATE SENSITIVITY; MECHANICAL CHARACTERIZATION; STRUCTURAL-CHARACTERIZATION; PHASE-SEPARATION; ELASTIC-MODULUS; INSTRUMENTED INDENTATION; NANOINDENTATION CREEP; DEFECT RESISTANCE; GLASS-CERAMICS; CONSTANT-LOAD
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 23 Apr 2019 05:31
Letzte Änderung: 23 Apr 2019 05:31
PPN:
Sponsoren: Deutsche Forschungsgemeinschaft (IC), 64/7-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen