TU Darmstadt / ULB / TUbiblio

Weighted Robust PCA for Statistical Shape Modeling

Ma, Jingting ; Lin, Feng ; Honsdorf, Jonas ; Lentzen, Katharina ; Wesarg, Stefan ; Erdt, Marius (2016)
Weighted Robust PCA for Statistical Shape Modeling.
7th International Conference, MIAR 2016. Bern, Switzerland (24.08.2016-24.08.2016)
doi: 10.1007/978-3-319-43775-0
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Statistical shape models (SSMs) play an important role in medical image analysis. A sufficiently large number of high quality datasets is needed in order to create a SSM containing all possible shape variations. However, the available datasets may contain corrupted or missing data due to the fact that clinical images are often captured incompletely or contain artifacts. In this work, we propose a weighted Robust Principal Component Analysis (WRPCA) method to create SSMs from incomplete or corrupted datasets. In particular, we introduce a weighting scheme into the conventional Robust Principal Component Analysis (RPCA) algorithm in order to discriminate unusable data from meaningful ones in the decomposition of the training data matrix more accurately. For evaluation, the proposed WRPCA is compared with conventional RPCA on both corrupted (63 CT datasets of the liver) and incomplete datasets (15 MRI datasets of the human foot). The results show a significant improvement in terms of reconstruction accuracy on both datasets.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Ma, Jingting ; Lin, Feng ; Honsdorf, Jonas ; Lentzen, Katharina ; Wesarg, Stefan ; Erdt, Marius
Art des Eintrags: Bibliographie
Titel: Weighted Robust PCA for Statistical Shape Modeling
Sprache: Englisch
Publikationsjahr: August 2016
Verlag: Springer
Buchtitel: Medical Imaging and Augmented Reality
Reihe: Lecture Notes in Computer Science (LNCS); 9805
Veranstaltungstitel: 7th International Conference, MIAR 2016
Veranstaltungsort: Bern, Switzerland
Veranstaltungsdatum: 24.08.2016-24.08.2016
DOI: 10.1007/978-3-319-43775-0
Kurzbeschreibung (Abstract):

Statistical shape models (SSMs) play an important role in medical image analysis. A sufficiently large number of high quality datasets is needed in order to create a SSM containing all possible shape variations. However, the available datasets may contain corrupted or missing data due to the fact that clinical images are often captured incompletely or contain artifacts. In this work, we propose a weighted Robust Principal Component Analysis (WRPCA) method to create SSMs from incomplete or corrupted datasets. In particular, we introduce a weighting scheme into the conventional Robust Principal Component Analysis (RPCA) algorithm in order to discriminate unusable data from meaningful ones in the decomposition of the training data matrix more accurately. For evaluation, the proposed WRPCA is compared with conventional RPCA on both corrupted (63 CT datasets of the liver) and incomplete datasets (15 MRI datasets of the human foot). The results show a significant improvement in terms of reconstruction accuracy on both datasets.

Freie Schlagworte: Guiding Theme: Individual Health, Research Area: Computer graphics (CG), Research Area: Modeling (MOD), Statistical shape models (SSM), Shape reconstruction
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 07 Mai 2019 09:26
Letzte Änderung: 07 Mai 2019 09:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen