TU Darmstadt / ULB / TUbiblio

Visual-Interactive Segmentation of Multivariate Time Series

Bernard, Jürgen ; Dobermann, Eduard ; Bögl, Markus ; Röhlig, Martin ; Vögele, Anna ; Kohlhammer, Jörn (2016)
Visual-Interactive Segmentation of Multivariate Time Series.
EuroVA 2016, 7th international EuroVis workshop on Visual Analytics. Groningen, The Netherlands (06.06.2016-07.06.2016)
doi: 10.2312/eurova.20161121
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Choosing appropriate time series segmentation algorithms and relevant parameter values is a challenging problem. In order to choose meaningful candidates it is important that different segmentation results are comparable. We propose a Visual Analytics (VA) approach to address these challenges in the scope of human motion capture data, a special type of multivariate time series data. In our prototype, users can interactively select from a rich set of segmentation algorithm candidates. In an overview visualization, the results of these segmentations can be compared and adjusted with regard to visualizations of raw data. A similarity-preserving colormap further facilitates visual comparison and labeling of segments. We present our prototype and demonstrate how it can ease the choice of winning candidates from a set of results for the segmentation of human motion capture data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Bernard, Jürgen ; Dobermann, Eduard ; Bögl, Markus ; Röhlig, Martin ; Vögele, Anna ; Kohlhammer, Jörn
Art des Eintrags: Bibliographie
Titel: Visual-Interactive Segmentation of Multivariate Time Series
Sprache: Englisch
Publikationsjahr: Juni 2016
Verlag: Eurographics Association, Goslar
Veranstaltungstitel: EuroVA 2016, 7th international EuroVis workshop on Visual Analytics
Veranstaltungsort: Groningen, The Netherlands
Veranstaltungsdatum: 06.06.2016-07.06.2016
DOI: 10.2312/eurova.20161121
Kurzbeschreibung (Abstract):

Choosing appropriate time series segmentation algorithms and relevant parameter values is a challenging problem. In order to choose meaningful candidates it is important that different segmentation results are comparable. We propose a Visual Analytics (VA) approach to address these challenges in the scope of human motion capture data, a special type of multivariate time series data. In our prototype, users can interactively select from a rich set of segmentation algorithm candidates. In an overview visualization, the results of these segmentations can be compared and adjusted with regard to visualizations of raw data. A similarity-preserving colormap further facilitates visual comparison and labeling of segments. We present our prototype and demonstrate how it can ease the choice of winning candidates from a set of results for the segmentation of human motion capture data.

Freie Schlagworte: Guiding Theme: Digitized Work, Guiding Theme: Individual Health, Guiding Theme: Smart City, Research Area: Computer graphics (CG), Research Area: Computer vision (CV), Research Area: Human computer interaction (HCI), Information visualization, Visual analytics, Time series analysis, Data mining, Machine learning, Clustering, Human motion analysis
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 08 Mai 2019 06:40
Letzte Änderung: 08 Mai 2019 06:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen