TU Darmstadt / ULB / TUbiblio

Stereo-Image Normalization of Voluminous Objects Improves Textile Defect Recognition

Siegmund, Dirk ; Kuijper, Arjan ; Braun, Andreas (2016)
Stereo-Image Normalization of Voluminous Objects Improves Textile Defect Recognition.
Advances in Visual Computing. 12th International Symposium, ISVC 2016. Las Vegas, NV, USA (12.12.2016-14.12.2016)
doi: 10.1007/978-3-319-50835-1_17
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The visual detection of defects in textiles is an important application in the textile industry. Existing systems require textiles to be spread flat so they appear as 2D surfaces, in order to detect defects. In contrast, we show classification of textiles and textile feature extraction methods, which can be used when textiles are in inhomogeneous, voluminous shape. We present a novel approach on image normalization to be used in stain-defect recognition. The acquired database consist of images of piles of textiles, taken using stereo vision. The results show that a simple classifier using normalized images outperforms other approaches using machine learning in classification accuracy.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Siegmund, Dirk ; Kuijper, Arjan ; Braun, Andreas
Art des Eintrags: Bibliographie
Titel: Stereo-Image Normalization of Voluminous Objects Improves Textile Defect Recognition
Sprache: Englisch
Publikationsjahr: Dezember 2016
Verlag: Springer International Publishing
Buchtitel: Advances in Visual Computing
Reihe: Lecture Notes in Computer Science (LNCS); 10072
Veranstaltungstitel: Advances in Visual Computing. 12th International Symposium, ISVC 2016
Veranstaltungsort: Las Vegas, NV, USA
Veranstaltungsdatum: 12.12.2016-14.12.2016
DOI: 10.1007/978-3-319-50835-1_17
Kurzbeschreibung (Abstract):

The visual detection of defects in textiles is an important application in the textile industry. Existing systems require textiles to be spread flat so they appear as 2D surfaces, in order to detect defects. In contrast, we show classification of textiles and textile feature extraction methods, which can be used when textiles are in inhomogeneous, voluminous shape. We present a novel approach on image normalization to be used in stain-defect recognition. The acquired database consist of images of piles of textiles, taken using stereo vision. The results show that a simple classifier using normalized images outperforms other approaches using machine learning in classification accuracy.

Freie Schlagworte: Guiding Theme: Digitized Work, Research Area: Computer vision (CV), 3D Image processing, Multi-view stereo, Machine learning, Pattern recognition
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 06 Mai 2019 07:25
Letzte Änderung: 07 Mai 2019 08:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen