TU Darmstadt / ULB / TUbiblio

Isogeometric Shell Analysis with NURBS Compatible Subdivision Surfaces

Riffnaller-Schiefer, Andreas ; Augsdörfer, Ursula H. ; Fellner, Dieter W. (2016)
Isogeometric Shell Analysis with NURBS Compatible Subdivision Surfaces.
In: Applied Mathematics and Computation, 272 (Part1)
doi: 10.1016/j.amc.2015.06.113
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We present a discretisation of Kirchhoff-Love thin shells based on a subdivision algorithm that generalizes NURBS to arbitrary topology. The isogeometric framework combines the advantages of both subdivision and NURBS, enabling higher degree analysis on watertight meshes of arbitrary geometry, including conic sections. Because multiple knots are supported, it is possible to benefit from symmetries in the geometry for a more efficient subdivision based analysis. The use of the new subdivision algorithm is an improvement to the flexibility of current isogeometric analysis approaches and allows new use cases.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Riffnaller-Schiefer, Andreas ; Augsdörfer, Ursula H. ; Fellner, Dieter W.
Art des Eintrags: Bibliographie
Titel: Isogeometric Shell Analysis with NURBS Compatible Subdivision Surfaces
Sprache: Englisch
Publikationsjahr: 2016
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applied Mathematics and Computation
Jahrgang/Volume einer Zeitschrift: 272
(Heft-)Nummer: Part1
DOI: 10.1016/j.amc.2015.06.113
Kurzbeschreibung (Abstract):

We present a discretisation of Kirchhoff-Love thin shells based on a subdivision algorithm that generalizes NURBS to arbitrary topology. The isogeometric framework combines the advantages of both subdivision and NURBS, enabling higher degree analysis on watertight meshes of arbitrary geometry, including conic sections. Because multiple knots are supported, it is possible to benefit from symmetries in the geometry for a more efficient subdivision based analysis. The use of the new subdivision algorithm is an improvement to the flexibility of current isogeometric analysis approaches and allows new use cases.

Freie Schlagworte: Forschungsgruppe Semantic Models, Immersive Systems (SMIS), Isogeometry, Subdivision surfaces, NURBS
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 06 Mai 2019 10:18
Letzte Änderung: 04 Feb 2022 12:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen