Riffnaller-Schiefer, Andreas ; Augsdörfer, Ursula H. ; Fellner, Dieter W. (2016)
Isogeometric Shell Analysis with NURBS Compatible Subdivision Surfaces.
In: Applied Mathematics and Computation, 272 (Part1)
doi: 10.1016/j.amc.2015.06.113
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We present a discretisation of Kirchhoff-Love thin shells based on a subdivision algorithm that generalizes NURBS to arbitrary topology. The isogeometric framework combines the advantages of both subdivision and NURBS, enabling higher degree analysis on watertight meshes of arbitrary geometry, including conic sections. Because multiple knots are supported, it is possible to benefit from symmetries in the geometry for a more efficient subdivision based analysis. The use of the new subdivision algorithm is an improvement to the flexibility of current isogeometric analysis approaches and allows new use cases.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2016 |
Autor(en): | Riffnaller-Schiefer, Andreas ; Augsdörfer, Ursula H. ; Fellner, Dieter W. |
Art des Eintrags: | Bibliographie |
Titel: | Isogeometric Shell Analysis with NURBS Compatible Subdivision Surfaces |
Sprache: | Englisch |
Publikationsjahr: | 2016 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applied Mathematics and Computation |
Jahrgang/Volume einer Zeitschrift: | 272 |
(Heft-)Nummer: | Part1 |
DOI: | 10.1016/j.amc.2015.06.113 |
Kurzbeschreibung (Abstract): | We present a discretisation of Kirchhoff-Love thin shells based on a subdivision algorithm that generalizes NURBS to arbitrary topology. The isogeometric framework combines the advantages of both subdivision and NURBS, enabling higher degree analysis on watertight meshes of arbitrary geometry, including conic sections. Because multiple knots are supported, it is possible to benefit from symmetries in the geometry for a more efficient subdivision based analysis. The use of the new subdivision algorithm is an improvement to the flexibility of current isogeometric analysis approaches and allows new use cases. |
Freie Schlagworte: | Forschungsgruppe Semantic Models, Immersive Systems (SMIS), Isogeometry, Subdivision surfaces, NURBS |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 06 Mai 2019 10:18 |
Letzte Änderung: | 04 Feb 2022 12:39 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |