TU Darmstadt / ULB / TUbiblio

Exploring Machine Learning Object Classification for Interactive Proximity Surfaces

Braun, Andreas ; Alekseew, Michael ; Kuijper, Arjan (2016)
Exploring Machine Learning Object Classification for Interactive Proximity Surfaces.
4th International Conference, DAPI 2016. Toronto, ON, Canada (17.07.2016-22.07.2016)
doi: 10.1007/978-3-319-39862-4_15
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Capacitive proximity sensors are a variety of the sensing technology that drives most finger-controlled touch screens today. However, they work over a larger distance. As they are not disturbed by non-conductive materials, they can be used to track hands above arbitrary surfaces, creating flexible interactive surfaces. Since the resolution is lower compared to many other sensing technologies, it is necessary to use sophisticated data processing methods for object recognition and tracking. In this work we explore machine learning methods for the detection and tracking of hands above an interactive surface created with capacitive proximity sensors. We discuss suitable methods and present our implementation based on Random Decision Forests. The system has been evaluated on a prototype interactive surface - the CapTap. Using a Kinect-based hand tracking system, we collect training data and compare the results of the learning algorithm to actual data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Braun, Andreas ; Alekseew, Michael ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Exploring Machine Learning Object Classification for Interactive Proximity Surfaces
Sprache: Englisch
Publikationsjahr: Juli 2016
Verlag: Springer International Publishing, Switzerland
Buchtitel: Distributed, Ambient, and Pervasive Interactions
Reihe: Lecture Notes in Computer Science (LNCS); 9749
Veranstaltungstitel: 4th International Conference, DAPI 2016
Veranstaltungsort: Toronto, ON, Canada
Veranstaltungsdatum: 17.07.2016-22.07.2016
DOI: 10.1007/978-3-319-39862-4_15
Kurzbeschreibung (Abstract):

Capacitive proximity sensors are a variety of the sensing technology that drives most finger-controlled touch screens today. However, they work over a larger distance. As they are not disturbed by non-conductive materials, they can be used to track hands above arbitrary surfaces, creating flexible interactive surfaces. Since the resolution is lower compared to many other sensing technologies, it is necessary to use sophisticated data processing methods for object recognition and tracking. In this work we explore machine learning methods for the detection and tracking of hands above an interactive surface created with capacitive proximity sensors. We discuss suitable methods and present our implementation based on Random Decision Forests. The system has been evaluated on a prototype interactive surface - the CapTap. Using a Kinect-based hand tracking system, we collect training data and compare the results of the learning algorithm to actual data.

Freie Schlagworte: Guiding Theme: Smart City, Research Area: Human computer interaction (HCI), Interactive surfaces, Machine learning, Capacitive sensors, Proximity sensing
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 06 Mai 2019 07:22
Letzte Änderung: 07 Mai 2019 08:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen