Braun, Andreas ; Alekseew, Michael ; Kuijper, Arjan (2016)
Exploring Machine Learning Object Classification for Interactive Proximity Surfaces.
4th International Conference, DAPI 2016. Toronto, ON, Canada (17.07.2016-22.07.2016)
doi: 10.1007/978-3-319-39862-4_15
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Capacitive proximity sensors are a variety of the sensing technology that drives most finger-controlled touch screens today. However, they work over a larger distance. As they are not disturbed by non-conductive materials, they can be used to track hands above arbitrary surfaces, creating flexible interactive surfaces. Since the resolution is lower compared to many other sensing technologies, it is necessary to use sophisticated data processing methods for object recognition and tracking. In this work we explore machine learning methods for the detection and tracking of hands above an interactive surface created with capacitive proximity sensors. We discuss suitable methods and present our implementation based on Random Decision Forests. The system has been evaluated on a prototype interactive surface - the CapTap. Using a Kinect-based hand tracking system, we collect training data and compare the results of the learning algorithm to actual data.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2016 |
Autor(en): | Braun, Andreas ; Alekseew, Michael ; Kuijper, Arjan |
Art des Eintrags: | Bibliographie |
Titel: | Exploring Machine Learning Object Classification for Interactive Proximity Surfaces |
Sprache: | Englisch |
Publikationsjahr: | Juli 2016 |
Verlag: | Springer International Publishing, Switzerland |
Buchtitel: | Distributed, Ambient, and Pervasive Interactions |
Reihe: | Lecture Notes in Computer Science (LNCS); 9749 |
Veranstaltungstitel: | 4th International Conference, DAPI 2016 |
Veranstaltungsort: | Toronto, ON, Canada |
Veranstaltungsdatum: | 17.07.2016-22.07.2016 |
DOI: | 10.1007/978-3-319-39862-4_15 |
Kurzbeschreibung (Abstract): | Capacitive proximity sensors are a variety of the sensing technology that drives most finger-controlled touch screens today. However, they work over a larger distance. As they are not disturbed by non-conductive materials, they can be used to track hands above arbitrary surfaces, creating flexible interactive surfaces. Since the resolution is lower compared to many other sensing technologies, it is necessary to use sophisticated data processing methods for object recognition and tracking. In this work we explore machine learning methods for the detection and tracking of hands above an interactive surface created with capacitive proximity sensors. We discuss suitable methods and present our implementation based on Random Decision Forests. The system has been evaluated on a prototype interactive surface - the CapTap. Using a Kinect-based hand tracking system, we collect training data and compare the results of the learning algorithm to actual data. |
Freie Schlagworte: | Guiding Theme: Smart City, Research Area: Human computer interaction (HCI), Interactive surfaces, Machine learning, Capacitive sensors, Proximity sensing |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 06 Mai 2019 07:22 |
Letzte Änderung: | 07 Mai 2019 08:28 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |