TU Darmstadt / ULB / TUbiblio

Benchmarking Sensors in Smart Environments - Method and Use Cases

Braun, Andreas ; Wichert, Reiner ; Kuijper, Arjan ; Fellner, Dieter W. (2016)
Benchmarking Sensors in Smart Environments - Method and Use Cases.
In: Journal of Ambient Intelligence and Smart Environments, 8 (6)
doi: 10.3233/AIS-160402
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Smart environment applications can be based on a large variety of different sensors that may support the same use case, but have specific advantages or disadvantages. Benchmarking can allow determining the most suitable sensor systems for a given application by calculating a single benchmarking score, based on weighted evaluation of features that are relevant in smart environments. This set of features has to represent the complexity of applications in smart environments. In this work we present a benchmarking model that can calculate a benchmarking score, based on nine selected features that cover aspects of performance, the environment and the pervasiveness of the application. Extensions are presented that normalize the benchmark-ing score if required and compensate central tendency bias, if necessary. We outline how this model is applied to capacitive proximity sensors that measure properties of conductive objects over a distance. The model is used to identify existing and find potential new application domains for this upcoming technology in smart environments.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Braun, Andreas ; Wichert, Reiner ; Kuijper, Arjan ; Fellner, Dieter W.
Art des Eintrags: Bibliographie
Titel: Benchmarking Sensors in Smart Environments - Method and Use Cases
Sprache: Englisch
Publikationsjahr: 2016
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Ambient Intelligence and Smart Environments
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 6
DOI: 10.3233/AIS-160402
Kurzbeschreibung (Abstract):

Smart environment applications can be based on a large variety of different sensors that may support the same use case, but have specific advantages or disadvantages. Benchmarking can allow determining the most suitable sensor systems for a given application by calculating a single benchmarking score, based on weighted evaluation of features that are relevant in smart environments. This set of features has to represent the complexity of applications in smart environments. In this work we present a benchmarking model that can calculate a benchmarking score, based on nine selected features that cover aspects of performance, the environment and the pervasiveness of the application. Extensions are presented that normalize the benchmark-ing score if required and compensate central tendency bias, if necessary. We outline how this model is applied to capacitive proximity sensors that measure properties of conductive objects over a distance. The model is used to identify existing and find potential new application domains for this upcoming technology in smart environments.

Freie Schlagworte: Guiding Theme: Smart City, Research Area: Human computer interaction (HCI), Smart environments, Modeling, Sensor technologies, Capacitive sensors, Capacitive proximity sensing, Benchmarking
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 03 Mai 2019 05:30
Letzte Änderung: 04 Feb 2022 12:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen