TU Darmstadt / ULB / TUbiblio

Automatic Corneal Tissue Classification Using Bag-Of-Visual-Words Approaches

Bartschat, Andreas ; Toso, Lorenzo ; Stegmaier, Johannes ; Kuijper, Arjan ; Mikut, Ralf ; Köhler, Bernd ; Allgeier, Stephan (2016)
Automatic Corneal Tissue Classification Using Bag-Of-Visual-Words Approaches.
Forum Bildverarbeitung 2016. Karlsruhe (01.12.2016-02.12.2016)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Corneal confocal microscopy is a promising diagnostic method for peripheral neuropathy. It allows the recording of the sub-basal nerve plexus (SNP) and enables the morphological analysis of peripheral nerves. This work evaluates classification models for real-time evaluation of cornea images in order to find suitable methods for an automatic focus adaptation to the SNP. The analyzed Bag-of-Visual-Words method leads to models with an accuracy of 0.9, even on a small training dataset, and a runtime of 18 ms per image. Furthermore, the analysis of the support vector machine real-valued output shows high potential for the implementation of real-time focus optimization methods.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Bartschat, Andreas ; Toso, Lorenzo ; Stegmaier, Johannes ; Kuijper, Arjan ; Mikut, Ralf ; Köhler, Bernd ; Allgeier, Stephan
Art des Eintrags: Bibliographie
Titel: Automatic Corneal Tissue Classification Using Bag-Of-Visual-Words Approaches
Sprache: Englisch
Publikationsjahr: Dezember 2016
Verlag: KIT Scientific Publishing, Karlsruhe
Veranstaltungstitel: Forum Bildverarbeitung 2016
Veranstaltungsort: Karlsruhe
Veranstaltungsdatum: 01.12.2016-02.12.2016
Kurzbeschreibung (Abstract):

Corneal confocal microscopy is a promising diagnostic method for peripheral neuropathy. It allows the recording of the sub-basal nerve plexus (SNP) and enables the morphological analysis of peripheral nerves. This work evaluates classification models for real-time evaluation of cornea images in order to find suitable methods for an automatic focus adaptation to the SNP. The analyzed Bag-of-Visual-Words method leads to models with an accuracy of 0.9, even on a small training dataset, and a runtime of 18 ms per image. Furthermore, the analysis of the support vector machine real-valued output shows high potential for the implementation of real-time focus optimization methods.

Freie Schlagworte: Guiding Theme: Individual Health, Research Area: Computer vision (CV), Image classification, Image processing
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 08 Mai 2019 06:31
Letzte Änderung: 08 Mai 2019 06:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen