TU Darmstadt / ULB / TUbiblio

Attack Detection in an Autonomous Entrance System using Optical Flow

Siegmund, Dirk ; Fu, Biying ; Samartzidis, Timotheos ; Wainakh, Aidmar ; Kuijper, Arjan ; Braun, Andreas (2016)
Attack Detection in an Autonomous Entrance System using Optical Flow.
7th International Conference on Imaging for Crime Detection and Prevention. Madrid, Spain (23.11.2016-25.11.2016)
doi: 10.1049/ic.2016.0087
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Unstaffed access control portals are becoming more common in high security areas. Existing systems require expensive hardware, or are sensitive to changing environmental conditions. We present a single camera system for a mantrap which is able to verify that only one individual is in the designated transit area. Our novel approach combines optical flow and machine-learning classification. A database was created that consists of images of attempted attacks and regular verification. The results show that our approach provides competitive results and outperforms detection rates in several attack scenarios.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Siegmund, Dirk ; Fu, Biying ; Samartzidis, Timotheos ; Wainakh, Aidmar ; Kuijper, Arjan ; Braun, Andreas
Art des Eintrags: Bibliographie
Titel: Attack Detection in an Autonomous Entrance System using Optical Flow
Sprache: Englisch
Publikationsjahr: November 2016
Veranstaltungstitel: 7th International Conference on Imaging for Crime Detection and Prevention
Veranstaltungsort: Madrid, Spain
Veranstaltungsdatum: 23.11.2016-25.11.2016
DOI: 10.1049/ic.2016.0087
Kurzbeschreibung (Abstract):

Unstaffed access control portals are becoming more common in high security areas. Existing systems require expensive hardware, or are sensitive to changing environmental conditions. We present a single camera system for a mantrap which is able to verify that only one individual is in the designated transit area. Our novel approach combines optical flow and machine-learning classification. A database was created that consists of images of attempted attacks and regular verification. The results show that our approach provides competitive results and outperforms detection rates in several attack scenarios.

Freie Schlagworte: Guiding Theme: Digitized Work, Guiding Theme: Smart City, Research Area: Computer vision (CV), Research Area: Human computer interaction (HCI), Scene analysis, Optical flow, Computer vision, CRISP
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 06 Mai 2019 07:26
Letzte Änderung: 07 Mai 2019 08:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen