Koldijk, Saskia ; Bernard, Jürgen ; Ruppert, Tobias ; Kohlhammer, Jörn ; Neerincx, Mark A. ; Kraaij, Wessel (2015)
Visual Analytics of Work Behavior Data - Insights on Individual Differences.
Eurographics Conference on Visualization (EuroVis).
doi: 10.2312/eurovisshort.20151129
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Stress in working environments is a recent concern. We see potential in collecting sensor data to detect patterns in work behavior with potential danger to well-being. In this paper, we describe how we applied visual analytics to a work behavior dataset, containing information on facial expressions, postures, computer interactions, physiology and subjective experience. The challenge is to interpret this multi-modal low level sensor data. In this work, we alternate between automatic analysis procedures and data visualization. Our aim is twofold: 1) to research the relations of various sensor features with (stress related) mental states, and 2) to develop suitable visualization methods for insight into a large amount of behavioral data. Our most important insight is that people differ a lot in their (stress related) work behavior, which has to be taken into account in the analyses and visualizations.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2015 |
Autor(en): | Koldijk, Saskia ; Bernard, Jürgen ; Ruppert, Tobias ; Kohlhammer, Jörn ; Neerincx, Mark A. ; Kraaij, Wessel |
Art des Eintrags: | Bibliographie |
Titel: | Visual Analytics of Work Behavior Data - Insights on Individual Differences |
Sprache: | Englisch |
Publikationsjahr: | 2015 |
Verlag: | Eurographics Association, Goslar |
Veranstaltungstitel: | Eurographics Conference on Visualization (EuroVis) |
DOI: | 10.2312/eurovisshort.20151129 |
Kurzbeschreibung (Abstract): | Stress in working environments is a recent concern. We see potential in collecting sensor data to detect patterns in work behavior with potential danger to well-being. In this paper, we describe how we applied visual analytics to a work behavior dataset, containing information on facial expressions, postures, computer interactions, physiology and subjective experience. The challenge is to interpret this multi-modal low level sensor data. In this work, we alternate between automatic analysis procedures and data visualization. Our aim is twofold: 1) to research the relations of various sensor features with (stress related) mental states, and 2) to develop suitable visualization methods for insight into a large amount of behavioral data. Our most important insight is that people differ a lot in their (stress related) work behavior, which has to be taken into account in the analyses and visualizations. |
Freie Schlagworte: | Business Field: Digital society, Research Area: Modeling (MOD), Pattern recognition, Signal processing, Data analysis, Data visualization |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 08 Mai 2019 07:53 |
Letzte Änderung: | 08 Mai 2019 07:53 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |