TU Darmstadt / ULB / TUbiblio

Visual Analysis of Relations in Attributed Time-Series Data

Steiger, Martin ; Bernard, Jürgen ; Schader, Philipp ; Kohlhammer, Jörn (2015)
Visual Analysis of Relations in Attributed Time-Series Data.
EuroVA 2015.
doi: 10.2312/eurova.20151105
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we present visual-interactive techniques for revealing relations between two co-existing multivariate feature spaces. Such data is generated, for example, by sensor networks characterized by a set of (categorical) attributes which continuously measure physical quantities over time. A challenging analysis task is the seeking for interesting relations between the time-oriented data and the sensor attributes. Our approach uses visualinteractive analysis to enable analysts to identify correlations between similar time series and similar attributes of the data. It is based on a combination of machine-based encoding of this information in position and color and the human ability to recognize cohesive structures and patterns. In our figures, we illustrate how analysts can identify similarities and anomalies between time series and categorical attributes of metering devices and sensors.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2015
Autor(en): Steiger, Martin ; Bernard, Jürgen ; Schader, Philipp ; Kohlhammer, Jörn
Art des Eintrags: Bibliographie
Titel: Visual Analysis of Relations in Attributed Time-Series Data
Sprache: Englisch
Publikationsjahr: 2015
Verlag: Eurographics Association, Goslar
Veranstaltungstitel: EuroVA 2015
DOI: 10.2312/eurova.20151105
Kurzbeschreibung (Abstract):

In this paper, we present visual-interactive techniques for revealing relations between two co-existing multivariate feature spaces. Such data is generated, for example, by sensor networks characterized by a set of (categorical) attributes which continuously measure physical quantities over time. A challenging analysis task is the seeking for interesting relations between the time-oriented data and the sensor attributes. Our approach uses visualinteractive analysis to enable analysts to identify correlations between similar time series and similar attributes of the data. It is based on a combination of machine-based encoding of this information in position and color and the human ability to recognize cohesive structures and patterns. In our figures, we illustrate how analysts can identify similarities and anomalies between time series and categorical attributes of metering devices and sensors.

Freie Schlagworte: Business Field: Visual decision support, Research Area: Human computer interaction (HCI), Time series analysis, Human-computer interaction (HCI), User-centered design
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 08 Mai 2019 07:09
Letzte Änderung: 08 Mai 2019 07:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen