TU Darmstadt / ULB / TUbiblio

Screen Space Cone Tracing for Glossy Reflections

Hermanns, Lukas (2015)
Screen Space Cone Tracing for Glossy Reflections.
Technische Universität Darmstadt
Bachelorarbeit, Bibliographie

Kurzbeschreibung (Abstract)

Indirect lighting (also Global Illumination (GI)) is an important part of photo-realistic imagery and has become a widely used method in real-time graphics applications, such as Computer Aided Design (CAD), Augmented Realtiy (AR) and video games. Path tracing can already achieve photorealism by shooting thousands or millions of rays into a 3D scene for every pixel, which results in computational overhead exceeding real-time budgets. However, with modern programmable shader pipelines, a fusion of ray-casting algorithms and rasterization is possible, i.e. methods, which are similar to testing rays against geometry, can be performed on the GPU within a fragment (or rather pixel-) shader. Nevertheless, many implementations for real-time GI still trace perfect specular reflections only. In this Bachelor thesis the advantages and disadvantages of different reflection methods are exposed and a combination of some of these is presented, which circumvents artifacts in the rendering and provides a stable, temporally coherent image enhancement. The benefits and failings of this new method are clearly separated as well. Moreover the developed algorithm can be implemented as pure post-process, which can easily be integrated into an existing rendering pipeline. The core idea of this thesis has been presented as a poster at SIGGRAPH 2014 Hermanns and Franke, 2014.

Typ des Eintrags: Bachelorarbeit
Erschienen: 2015
Autor(en): Hermanns, Lukas
Art des Eintrags: Bibliographie
Titel: Screen Space Cone Tracing for Glossy Reflections
Sprache: Englisch
Publikationsjahr: 2015
Kurzbeschreibung (Abstract):

Indirect lighting (also Global Illumination (GI)) is an important part of photo-realistic imagery and has become a widely used method in real-time graphics applications, such as Computer Aided Design (CAD), Augmented Realtiy (AR) and video games. Path tracing can already achieve photorealism by shooting thousands or millions of rays into a 3D scene for every pixel, which results in computational overhead exceeding real-time budgets. However, with modern programmable shader pipelines, a fusion of ray-casting algorithms and rasterization is possible, i.e. methods, which are similar to testing rays against geometry, can be performed on the GPU within a fragment (or rather pixel-) shader. Nevertheless, many implementations for real-time GI still trace perfect specular reflections only. In this Bachelor thesis the advantages and disadvantages of different reflection methods are exposed and a combination of some of these is presented, which circumvents artifacts in the rendering and provides a stable, temporally coherent image enhancement. The benefits and failings of this new method are clearly separated as well. Moreover the developed algorithm can be implemented as pure post-process, which can easily be integrated into an existing rendering pipeline. The core idea of this thesis has been presented as a poster at SIGGRAPH 2014 Hermanns and Franke, 2014.

Freie Schlagworte: Business Field: Visual decision support, Research Area: Computer graphics (CG), Realtime 3D graphics, Global illumination, Shaders, Ray casting
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 21 Mai 2019 11:03
Letzte Änderung: 21 Mai 2019 11:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen