TU Darmstadt / ULB / TUbiblio

Enhancing Time Series Segmentation and Labeling Through the Knowledge Generation Model : Poster presented at the Eurographics Conference on Visualization (EuroVis)

Enhancing Time Series Segmentation and Labeling Through the Knowledge Generation Model : Poster presented at the Eurographics Conference on Visualization (EuroVis).
Eurographics Conference on Visualization, EuroVis 2015. (25.05.2015-29.05.2015)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Segmentation and labeling of different activities in multivariate time series data is an important task in many domains. There is a multitude of automatic segmentation and labeling methods available, which are designed to handle different situations. These methods can be used with multiple parametrizations, which leads to an overwhelming amount of options to choose from. To this end, we present a conceptual design of a Visual Analytics framework (1) to select appropriate segmentation and labeling methods with appropriate parametrizations, (2) to analyze the (multiple) results, (3) to understand different kinds and origins of uncertainties in these results, and (4) to reason which methods and which parametrizations yield stable results and fine-tune these configurations if necessary.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2015
Art des Eintrags: Bibliographie
Titel: Enhancing Time Series Segmentation and Labeling Through the Knowledge Generation Model : Poster presented at the Eurographics Conference on Visualization (EuroVis)
Sprache: Englisch
Publikationsjahr: Mai 2015
Ort: Cagliari, Sardinia, Italy
Veranstaltungstitel: Eurographics Conference on Visualization, EuroVis 2015
Veranstaltungsdatum: 25.05.2015-29.05.2015
Kurzbeschreibung (Abstract):

Segmentation and labeling of different activities in multivariate time series data is an important task in many domains. There is a multitude of automatic segmentation and labeling methods available, which are designed to handle different situations. These methods can be used with multiple parametrizations, which leads to an overwhelming amount of options to choose from. To this end, we present a conceptual design of a Visual Analytics framework (1) to select appropriate segmentation and labeling methods with appropriate parametrizations, (2) to analyze the (multiple) results, (3) to understand different kinds and origins of uncertainties in these results, and (4) to reason which methods and which parametrizations yield stable results and fine-tune these configurations if necessary.

Freie Schlagworte: Business Field: Visual decision support, Research Area: Modeling (MOD), Time series analysis, Multivariate data, Visual analytics
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 21 Jun 2019 08:06
Letzte Änderung: 21 Jun 2019 08:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen