Götz, Benedict (2019)
Evaluation of uncertainty in the vibration attenuation
with shunted piezoelectric transducers integrated in
a beam-column support.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
Vibrations in mechanical lightweight beam and truss-type structures are often related to several detrimental effects such as diminished durability, unwanted noise and safety issues. By integration of two piezoelectric transducers connected to RLand RLC-shunts into a beam-column support with rotational elasticity as presented in this work, vibrations of a beam-column with circular cross-section is significantly attenuated in various lateral directions. In contrast to other measures for vibration attenuation, the advantages of the piezoelectric transducer with shunt circuit are the possibility of integrating the transducer into the structure’s mechanical load path and the precise vibration attenuation adjustment. In this work, on the one hand, the capability of the proposed piezo-elastic support to attenuate lateral beam-column vibrations with shunted transducers is investigated experimentally and numerically. On the other hand, uncertainty in the vibration attenuation is quantified and evaluated by experiments and simulation to reduce uncertainty in the application of the piezo-elastic support. It is shown numerically and experimentally that the proposed concept of the piezoelastic support attenuates beam-column vibrations in various lateral directions by 89% with RL-shunts and by 96% with RLC-shunts compared to vibrations without attenuation through shunts. However, uncertainty caused by manufacturing, assembly and static axial beam-column load variations affects the lateral beamcolumn vibration attenuation during operation. As an approach for uncertainty quantification, a model-based uncertainty analysis with parameter uncertainty assumed from own experiments and literature is performed. Own experiments are performed to quantify uncertainty due to spring element manufacturing variations, a key element of the piezo-elastic support, and due to static beam-column load variations. It is shown that both sources significantly affect the vibration attenuation with RL- and RLC-shunts. So far, uncertainty due to static beam-column load variations has not been subject of research for resonant shunted transducers. Numerical results of the model-based uncertainty analysis with uncertainty assumed from own experiments and literature combined show that vibration attenuation with RL- and RLC-shunts is significantly affected by all three sources of uncertainty but still adequate vibration attenuation is achieved. More specifically, vibration attenuation with RLC-shunts is only little affected by static load variations. The novelty of this work is the use of resonant shunted piezoelectric transducers integrated in a beam-column support for vibration attenuation. Furthermore, the evaluation of uncertainty by probabilistic measures of the maximum vibration amplitude of the uncertain vibration behavior is new.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2019 | ||||
Autor(en): | Götz, Benedict | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Evaluation of uncertainty in the vibration attenuation with shunted piezoelectric transducers integrated in a beam-column support | ||||
Sprache: | Englisch | ||||
Referenten: | Melz, Prof. Dr. Tobias ; Groche, Prof. Dr. Peter | ||||
Publikationsjahr: | 2019 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 28 November 2018 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/8608 | ||||
Kurzbeschreibung (Abstract): | Vibrations in mechanical lightweight beam and truss-type structures are often related to several detrimental effects such as diminished durability, unwanted noise and safety issues. By integration of two piezoelectric transducers connected to RLand RLC-shunts into a beam-column support with rotational elasticity as presented in this work, vibrations of a beam-column with circular cross-section is significantly attenuated in various lateral directions. In contrast to other measures for vibration attenuation, the advantages of the piezoelectric transducer with shunt circuit are the possibility of integrating the transducer into the structure’s mechanical load path and the precise vibration attenuation adjustment. In this work, on the one hand, the capability of the proposed piezo-elastic support to attenuate lateral beam-column vibrations with shunted transducers is investigated experimentally and numerically. On the other hand, uncertainty in the vibration attenuation is quantified and evaluated by experiments and simulation to reduce uncertainty in the application of the piezo-elastic support. It is shown numerically and experimentally that the proposed concept of the piezoelastic support attenuates beam-column vibrations in various lateral directions by 89% with RL-shunts and by 96% with RLC-shunts compared to vibrations without attenuation through shunts. However, uncertainty caused by manufacturing, assembly and static axial beam-column load variations affects the lateral beamcolumn vibration attenuation during operation. As an approach for uncertainty quantification, a model-based uncertainty analysis with parameter uncertainty assumed from own experiments and literature is performed. Own experiments are performed to quantify uncertainty due to spring element manufacturing variations, a key element of the piezo-elastic support, and due to static beam-column load variations. It is shown that both sources significantly affect the vibration attenuation with RL- and RLC-shunts. So far, uncertainty due to static beam-column load variations has not been subject of research for resonant shunted transducers. Numerical results of the model-based uncertainty analysis with uncertainty assumed from own experiments and literature combined show that vibration attenuation with RL- and RLC-shunts is significantly affected by all three sources of uncertainty but still adequate vibration attenuation is achieved. More specifically, vibration attenuation with RLC-shunts is only little affected by static load variations. The novelty of this work is the use of resonant shunted piezoelectric transducers integrated in a beam-column support for vibration attenuation. Furthermore, the evaluation of uncertainty by probabilistic measures of the maximum vibration amplitude of the uncertain vibration behavior is new. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-86082 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM) 16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM) > Beschreibung, Bewertung und Beherrschung der Zuverlässigkeit mechanischer Systeme 16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM) > Entwicklung, Modellierung, Bewertung und Nutzung smarter Strukturkomponenten und -systeme DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 805: Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus |
||||
Hinterlegungsdatum: | 14 Apr 2019 19:55 | ||||
Letzte Änderung: | 14 Apr 2019 19:55 | ||||
PPN: | |||||
Referenten: | Melz, Prof. Dr. Tobias ; Groche, Prof. Dr. Peter | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 28 November 2018 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |