TU Darmstadt / ULB / TUbiblio

Entropy Generation Analysis and Thermodynamic Optimization of Jet Impingement Cooling Using Large Eddy Simulation

Ries, F. ; Yongxiang, L. ; Nishad, K. ; Janicka, J. ; Sadiki, A. (2019)
Entropy Generation Analysis and Thermodynamic Optimization of Jet Impingement Cooling Using Large Eddy Simulation.
In: Entropy, 21 (2)
doi: 10.3390/e21020129
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In this work, entropy generation analysis is applied to characterize and optimize a turbulent impinging jet on a heated solid surface. In particular, the influence of plate inclinations and Reynolds numbers on the turbulent heat and fluid flow properties and its impact on the thermodynamic performance of such flow arrangements are numerically investigated. For this purpose, novel model equations are derived in the frame of Large Eddy Simulation (LES) that allows calculation of local entropy generation rates in a post-processing phase including the effect of unresolved subgrid-scale irreversibilities. From this LES-based study, distinctive features of heat and flow dynamics of the impinging fluid are detected and optimal operating designs for jet impingement cooling are identified. It turned out that (1) the location of the stagnation point and that of the maximal Nusselt number differ in the case of plate inclination; (2) predominantly the impinged wall acts as a strong source of irreversibility; and (3) a flow arrangement with a jet impinging normally on the heated surface allows the most efficient use of energy which is associated with lowest exergy lost. Furthermore, it is found that increasing the Reynolds number intensifies the heat transfer and upgrades the second law efficiency of such thermal systems. Thereby, the thermal efficiency enhancement can overwhelm the frictional exergy loss.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Ries, F. ; Yongxiang, L. ; Nishad, K. ; Janicka, J. ; Sadiki, A.
Art des Eintrags: Bibliographie
Titel: Entropy Generation Analysis and Thermodynamic Optimization of Jet Impingement Cooling Using Large Eddy Simulation
Sprache: Englisch
Publikationsjahr: 31 Januar 2019
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Entropy
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 2
DOI: 10.3390/e21020129
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this work, entropy generation analysis is applied to characterize and optimize a turbulent impinging jet on a heated solid surface. In particular, the influence of plate inclinations and Reynolds numbers on the turbulent heat and fluid flow properties and its impact on the thermodynamic performance of such flow arrangements are numerically investigated. For this purpose, novel model equations are derived in the frame of Large Eddy Simulation (LES) that allows calculation of local entropy generation rates in a post-processing phase including the effect of unresolved subgrid-scale irreversibilities. From this LES-based study, distinctive features of heat and flow dynamics of the impinging fluid are detected and optimal operating designs for jet impingement cooling are identified. It turned out that (1) the location of the stagnation point and that of the maximal Nusselt number differ in the case of plate inclination; (2) predominantly the impinged wall acts as a strong source of irreversibility; and (3) a flow arrangement with a jet impinging normally on the heated surface allows the most efficient use of energy which is associated with lowest exergy lost. Furthermore, it is found that increasing the Reynolds number intensifies the heat transfer and upgrades the second law efficiency of such thermal systems. Thereby, the thermal efficiency enhancement can overwhelm the frictional exergy loss.

Freie Schlagworte: entropy generation analysis; heat transport; jet impingement cooling; large eddy simulation; turbulent flows
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Energie- und Kraftwerkstechnik (EKT)
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU)
16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS)
Profilbereiche
Profilbereiche > Thermo-Fluids & Interfaces
Hinterlegungsdatum: 27 Mär 2019 06:18
Letzte Änderung: 01 Mär 2024 09:36
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen