Loukrezis, Dimitrios (2019)
Adaptive approximations for high-dimensional uncertainty quantification in stochastic parametric electromagnetic field simulations.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
The present work addresses the problems of high-dimensional approximation and uncertainty quantification in the context of electromagnetic field simulations. In the presence of many parameters, one faces the so-called curse of dimensionality. The focus of this work lies on adaptive methods that mitigate the effect of the curse of dimensionality, and therefore enable otherwise intractable uncertainty quantification studies. Its application scope includes electromagnetic field models suffering from moderately high-dimensional input uncertainty. However, the presented methods can be used in a black-box fashion and are therefore applicable to other types of problems as well.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2019 | ||||
Autor(en): | Loukrezis, Dimitrios | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Adaptive approximations for high-dimensional uncertainty quantification in stochastic parametric electromagnetic field simulations | ||||
Sprache: | Englisch | ||||
Referenten: | De Gersem, Prof. Dr. Herbert ; Römer, Prof. Dr. Ulrich | ||||
Publikationsjahr: | 4 Februar 2019 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 4 Februar 2019 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/8485 | ||||
Kurzbeschreibung (Abstract): | The present work addresses the problems of high-dimensional approximation and uncertainty quantification in the context of electromagnetic field simulations. In the presence of many parameters, one faces the so-called curse of dimensionality. The focus of this work lies on adaptive methods that mitigate the effect of the curse of dimensionality, and therefore enable otherwise intractable uncertainty quantification studies. Its application scope includes electromagnetic field models suffering from moderately high-dimensional input uncertainty. However, the presented methods can be used in a black-box fashion and are therefore applicable to other types of problems as well. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-84854 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder > Theorie Elektromagnetischer Felder 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) |
||||
Hinterlegungsdatum: | 10 Mär 2019 20:55 | ||||
Letzte Änderung: | 10 Mär 2019 20:55 | ||||
PPN: | |||||
Referenten: | De Gersem, Prof. Dr. Herbert ; Römer, Prof. Dr. Ulrich | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 4 Februar 2019 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |