TU Darmstadt / ULB / TUbiblio

Multi-Level Cell Properties of a Bilayer Cu2O/Al2O3 Resistive Switching Device

Deuermeier, Jonas ; Kiazadeh, Asal ; Klein, Andreas ; Martins, Rodrigo ; Fortunato, Elvira (2019)
Multi-Level Cell Properties of a Bilayer Cu2O/Al2O3 Resistive Switching Device.
In: Nanomaterials, 9 (2)
doi: 10.3390/nano9020289
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Multi-level resistive switching characteristics of a Cu2O/Al2O3 bilayer device are presented. An oxidation state gradient in copper oxide induced by the fabrication process was found to play a dominant role in defining the multiple resistance states. The highly conductive grain boundaries of the copper oxide—an unusual property for an oxide semiconductor—are discussed for the first time regarding their role in the resistive switching mechanism.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Deuermeier, Jonas ; Kiazadeh, Asal ; Klein, Andreas ; Martins, Rodrigo ; Fortunato, Elvira
Art des Eintrags: Bibliographie
Titel: Multi-Level Cell Properties of a Bilayer Cu2O/Al2O3 Resistive Switching Device
Sprache: Englisch
Publikationsjahr: Februar 2019
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanomaterials
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 2
DOI: 10.3390/nano9020289
URL / URN: https://doi.org/10.3390/nano9020289
Kurzbeschreibung (Abstract):

Multi-level resistive switching characteristics of a Cu2O/Al2O3 bilayer device are presented. An oxidation state gradient in copper oxide induced by the fabrication process was found to play a dominant role in defining the multiple resistance states. The highly conductive grain boundaries of the copper oxide—an unusual property for an oxide semiconductor—are discussed for the first time regarding their role in the resistive switching mechanism.

Freie Schlagworte: resistive switching memories, multi-level cell, copper oxide, grain boundaries, aluminum oxide
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenstruktur von Materialien
Hinterlegungsdatum: 20 Feb 2019 09:54
Letzte Änderung: 08 Apr 2019 15:12
PPN:
Sponsoren: This research was funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under project number POCI-01-0145-FEDER-007688, Reference UID/CTM/50025., J.D. acknowledges funding received from the European Union’s Horizon 2020 Research and Innovation Programme through the project HERACLES (Project No. 700395) ., J.D. acknowledges funding received from the German Science Foundation through the collaborative research center SFB 595 (Electrical Fatigue of Functional Materials)., A. Kiazadeh acknowledges FCT for the postdoctoral grant SFRH/BPD/99136/2013 and for funding received through the project NeurOxide (PTDC/NAN-MAT/30812/2017).
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen