Weidner, Mirko ; Fuchs, Anne ; Bayer, Thorsten J. M. ; Rachut, Karsten ; Schnell, Patrick ; Deyu, Getnet K. ; Klein, Andreas (2019)
Defect Modulation Doping.
In: Advanced Functional Materials, 29 (14)
doi: 10.1002/adfm.201807906
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The doping of semiconductor materials is a fundamental part of modern technology, but the classical approaches have in many cases reached their limits both in regard to achievable charge carrier density as well as mobility. Modulation doping, a mechanism that exploits the energy band alignment at an interface between two materials to induce free charge carriers in one of them, is shown to circumvent the mobility restriction. Due to an alignment of doping limits by intrinsic defects, however, the carrier density limit cannot be lifted using this approach. Here, a novel doping strategy using defects in a wide bandgap material to dope the surface of a second semiconductor layer of dissimilar nature is presented. It is shown that by depositing an insulator on a semiconductor material, the conductivity of the layer stack can be increased by 7 orders of magnitude, without the necessity of high‐temperature processes or epitaxial growth. This approach has the potential to circumvent limits to both carrier mobility and density, opening up new possibilities in semiconductor device fabrication, particularly for the emerging field of oxide thin film electronics.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Weidner, Mirko ; Fuchs, Anne ; Bayer, Thorsten J. M. ; Rachut, Karsten ; Schnell, Patrick ; Deyu, Getnet K. ; Klein, Andreas |
Art des Eintrags: | Bibliographie |
Titel: | Defect Modulation Doping |
Sprache: | Englisch |
Publikationsjahr: | 10 Februar 2019 |
Verlag: | Wiley VCH, Weinheim, Germany |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Functional Materials |
Jahrgang/Volume einer Zeitschrift: | 29 |
(Heft-)Nummer: | 14 |
DOI: | 10.1002/adfm.201807906 |
URL / URN: | https://doi.org/10.1002/adfm.201807906 |
Kurzbeschreibung (Abstract): | The doping of semiconductor materials is a fundamental part of modern technology, but the classical approaches have in many cases reached their limits both in regard to achievable charge carrier density as well as mobility. Modulation doping, a mechanism that exploits the energy band alignment at an interface between two materials to induce free charge carriers in one of them, is shown to circumvent the mobility restriction. Due to an alignment of doping limits by intrinsic defects, however, the carrier density limit cannot be lifted using this approach. Here, a novel doping strategy using defects in a wide bandgap material to dope the surface of a second semiconductor layer of dissimilar nature is presented. It is shown that by depositing an insulator on a semiconductor material, the conductivity of the layer stack can be increased by 7 orders of magnitude, without the necessity of high‐temperature processes or epitaxial growth. This approach has the potential to circumvent limits to both carrier mobility and density, opening up new possibilities in semiconductor device fabrication, particularly for the emerging field of oxide thin film electronics. |
Freie Schlagworte: | alumina, atomic layer deposition, doping limit, modulation doping, transparent conducting oxides |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenstruktur von Materialien |
Hinterlegungsdatum: | 11 Feb 2019 08:17 |
Letzte Änderung: | 08 Apr 2019 15:10 |
PPN: | |
Sponsoren: | Funding by German Science Foundation., Funding by European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie. Grant Number: 641640. |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |