Reul, Johanna (2019)
Viral gene transfer systems for cancer immunotherapy:
semireplication-competent VSV and receptor-targeted AAV for the delivery of immunomodulatory proteins.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In recent years, immunotherapy approaches for the treatment of cancer have been intensively investigated and substantial benefit observed in clinical trials has led to the marketing authorization of various immunotherapeutic drugs including monoclonal antibodies and cytokine-based therapies. Even though, several studies demonstrated effectivity of cancer immunotherapy, improvement is still required to address issues such as efficacy and safety. Development of suitable delivery systems might contribute to the improvement of immunotherapeutic approaches for cancer, whereby one strategy involves the application of viral vectors. For this purpose, viruses can be used in two ways: Either as replication-deficient viral vectors that solely deliver the therapeutic gene of interest or as replication-competent oncolytic viruses that directly kill tumor cells and are additionally engineered to encode immunomodulatory transgenes. The latter strategy was addressed in the first part of the thesis which aimed at combining the oncolytic activity of semireplication-competent vesicular stomatitis virus (srVSV) with the viral-mediated expression of immunotherapeutic transgenes in order to induce a long-lasting antitumor immune response. The second part of the thesis intended to generate and characterize replication-deficient, receptor-targeted adeno-associated viral (AAV) vectors for the tumor-specific delivery of immune checkpoint inhibitors.
The srVSV system is based on two trans-complementing, propagation-deficient VSV vectors, VSVΔG and VSVΔL. Both vectors were armed with the immunostimulatory transgenes granulocyte-macrophage colony-stimulating factor (GM-CSF), FMS-like tyrosine kinase 3 ligand (Flt3L), B7 and the tumor-associated antigens Her2/neu as well as CTLA4-Her2/neu to enhance srVSV-mediated antitumor immune responses. After insertion of the immunotherapeutic transgenes into the VSVΔG as well as VSVΔL vector genomes, all recombinant vectors were successfully generated de novo and analyses confirmed srVSV-mediated transgene expression in vitro. As VSV is exquisitely sensitive to type I interferon (IFN)-induced antiviral responses, different murine tumor cell lines were analyzed for their IFN sensitivity to identify a suitable VSV-permissive syngeneic tumor mouse model for the preclinical studies. The murine colon cancer cell line MC38 was identified as a potentially appropriate tumor model since MC38 cells were productively infectable even when pretreated with high doses of IFNα. First preclinical data showed the capability of transgene-armed as well as control srVSV to induce an antitumor immune response in the MC38 tumor model eventually leading to cure in some animals. However, the in vivo data showed only a marginally improved therapeutic efficacy of transgene-armed versus control srVSV. Accordingly, more preclinical studies are required to clarify whether arming of srVSV with immunomodulatory payload indeed improves srVSV therapy efficacy.
Monoclonal antibodies directed against immune checkpoints, such as programmed cell death protein-1 (PD-1) and its ligand PD-L1, have shown promising results for the treatment of certain cancer types eventually leading to the marketing authorization of several products. However, drawbacks of this therapy include lack of efficacy in some patients and treatment-related toxicity. Probably the systemic administration of these antibodies does not only promote the activation of immune responses in the tumor microenvironment but also in healthy tissue. Therefore, this project aimed at the specific delivery of immune checkpoint inhibitors precisely to sites of tumor growth. To this end, Her2/neu-targeted AAV (Her2-AAV) vectors were equipped with the coding sequence of PD-1- or PD-L1-specific inhibitors. In vitro analyses showed that the inhibitors were readily detectable in the supernatant of AAV-transduced tumor cells. Furthermore, AAV-encoded αPD-1 as well as αPD-L1 specifically bound their target antigens. In vivo imaging analyses revealed that Her2-AAV successfully targeted tumor cells upon systemic injection into immunocompetent BALB/c mice bearing subcutaneously growing Her2/neu-positive RENCA tumors, while non-targeted AAV2 transduced mainly liver. Finally, in vivo delivery of AAV-encoded αPD-1 was assessed in the aforementioned mouse model. Mice injected with AAV2 showed the highest αPD-1 levels in the liver. In contrast, Her2-AAV successfully redirected the immune checkpoint inhibitor from liver to Her2/neu-positive tumor tissue upon systemic injection. In conclusion, this study is a proof of concept that tumor-targeted AAV vectors can be used for the delivery of immune checkpoint inhibitors to the site of tumor growth. It will pave the way for further investigations addressing toxicity and efficacy of vector-mediated compared to systemic immune checkpoint modulation.
Typ des Eintrags: |
Dissertation
|
Erschienen: |
2019 |
Autor(en): |
Reul, Johanna |
Art des Eintrags: |
Erstveröffentlichung |
Titel: |
Viral gene transfer systems for cancer immunotherapy:
semireplication-competent VSV and receptor-targeted AAV for the delivery of immunomodulatory proteins |
Sprache: |
Englisch |
Referenten: |
Süß, Prof. Dr. Beatrix ; Thiel, Prof. Dr. Gerhard ; Buchholz, Prof. Dr. Christian |
Publikationsjahr: |
2019 |
Ort: |
Darmstadt |
Datum der mündlichen Prüfung: |
24 Januar 2018 |
URL / URN: |
https://tuprints.ulb.tu-darmstadt.de/8332 |
Kurzbeschreibung (Abstract): |
In recent years, immunotherapy approaches for the treatment of cancer have been intensively investigated and substantial benefit observed in clinical trials has led to the marketing authorization of various immunotherapeutic drugs including monoclonal antibodies and cytokine-based therapies. Even though, several studies demonstrated effectivity of cancer immunotherapy, improvement is still required to address issues such as efficacy and safety. Development of suitable delivery systems might contribute to the improvement of immunotherapeutic approaches for cancer, whereby one strategy involves the application of viral vectors. For this purpose, viruses can be used in two ways: Either as replication-deficient viral vectors that solely deliver the therapeutic gene of interest or as replication-competent oncolytic viruses that directly kill tumor cells and are additionally engineered to encode immunomodulatory transgenes. The latter strategy was addressed in the first part of the thesis which aimed at combining the oncolytic activity of semireplication-competent vesicular stomatitis virus (srVSV) with the viral-mediated expression of immunotherapeutic transgenes in order to induce a long-lasting antitumor immune response. The second part of the thesis intended to generate and characterize replication-deficient, receptor-targeted adeno-associated viral (AAV) vectors for the tumor-specific delivery of immune checkpoint inhibitors.
The srVSV system is based on two trans-complementing, propagation-deficient VSV vectors, VSVΔG and VSVΔL. Both vectors were armed with the immunostimulatory transgenes granulocyte-macrophage colony-stimulating factor (GM-CSF), FMS-like tyrosine kinase 3 ligand (Flt3L), B7 and the tumor-associated antigens Her2/neu as well as CTLA4-Her2/neu to enhance srVSV-mediated antitumor immune responses. After insertion of the immunotherapeutic transgenes into the VSVΔG as well as VSVΔL vector genomes, all recombinant vectors were successfully generated de novo and analyses confirmed srVSV-mediated transgene expression in vitro. As VSV is exquisitely sensitive to type I interferon (IFN)-induced antiviral responses, different murine tumor cell lines were analyzed for their IFN sensitivity to identify a suitable VSV-permissive syngeneic tumor mouse model for the preclinical studies. The murine colon cancer cell line MC38 was identified as a potentially appropriate tumor model since MC38 cells were productively infectable even when pretreated with high doses of IFNα. First preclinical data showed the capability of transgene-armed as well as control srVSV to induce an antitumor immune response in the MC38 tumor model eventually leading to cure in some animals. However, the in vivo data showed only a marginally improved therapeutic efficacy of transgene-armed versus control srVSV. Accordingly, more preclinical studies are required to clarify whether arming of srVSV with immunomodulatory payload indeed improves srVSV therapy efficacy.
Monoclonal antibodies directed against immune checkpoints, such as programmed cell death protein-1 (PD-1) and its ligand PD-L1, have shown promising results for the treatment of certain cancer types eventually leading to the marketing authorization of several products. However, drawbacks of this therapy include lack of efficacy in some patients and treatment-related toxicity. Probably the systemic administration of these antibodies does not only promote the activation of immune responses in the tumor microenvironment but also in healthy tissue. Therefore, this project aimed at the specific delivery of immune checkpoint inhibitors precisely to sites of tumor growth. To this end, Her2/neu-targeted AAV (Her2-AAV) vectors were equipped with the coding sequence of PD-1- or PD-L1-specific inhibitors. In vitro analyses showed that the inhibitors were readily detectable in the supernatant of AAV-transduced tumor cells. Furthermore, AAV-encoded αPD-1 as well as αPD-L1 specifically bound their target antigens. In vivo imaging analyses revealed that Her2-AAV successfully targeted tumor cells upon systemic injection into immunocompetent BALB/c mice bearing subcutaneously growing Her2/neu-positive RENCA tumors, while non-targeted AAV2 transduced mainly liver. Finally, in vivo delivery of AAV-encoded αPD-1 was assessed in the aforementioned mouse model. Mice injected with AAV2 showed the highest αPD-1 levels in the liver. In contrast, Her2-AAV successfully redirected the immune checkpoint inhibitor from liver to Her2/neu-positive tumor tissue upon systemic injection. In conclusion, this study is a proof of concept that tumor-targeted AAV vectors can be used for the delivery of immune checkpoint inhibitors to the site of tumor growth. It will pave the way for further investigations addressing toxicity and efficacy of vector-mediated compared to systemic immune checkpoint modulation. |
Alternatives oder übersetztes Abstract: |
Alternatives Abstract | Sprache |
---|
Immuntherapeutische Ansätze stehen derzeit im Fokus der Forschung zur Behandlung von Krebserkrankungen und vielversprechende klinische Studien führten zur Markteinführung verschiedener Immuntherapeutika, einschließlich monoklonaler Antikörper und Zytokin-basierter Therapien. Um die Wirksamkeit und Sicherheit immuntherapeutischer Therapien zu verbessern, könnten virale Gentransfersysteme geeignete Instrumente darstellen. In diesem Zusammenhang ist der Einsatz von Viren auf zwei Arten denkbar: Entweder als replikationsdefiziente virale Vektoren, die ausschließlich für das therapeutische Gen kodieren oder als replikationskompetente onkolytische Viren, die nicht nur mit zusätzlichen immuntherapeutischen Genen ausgestattet sind, sondern Tumorzellen auch direkt lysieren können. Die letztgenannte Strategie wurde im ersten Teil dieser Arbeit verfolgt. Ziel war es die onkolytische Aktivität von semi-replikationskompetentem Virus der vesikulären Stomatitis (srVSV) mit der Expression von viral-kodierten immuntherapeutischen Transgenen zu kombinieren, um eine lang anhaltende antitumorale Immunantwort zu induzieren. Im zweiten Teil dieser Arbeit steht die Entwicklung von replikations-defizienten, zielgerichteten Adeno-assoziierten viralen (AAV) Vektoren für den tumorspezifischen Transfer von Immuncheckpoint-Inhibitoren im Fokus.
Das srVSV-System basiert auf zwei sich in trans komplementierenden, propagations-defizienten Vektoren, VSVΔG und VSVΔL. Zur Steigerung der antitumoralen Wirksamkeit wurden beide Vektoren mit den immuntherapeutischen Transgenen granulocyte-macrophage colony-stimulating factor (GM-CSF), FMS-like tyrosine kinase 3 ligand (Flt3L), B7 und dem tumorassoziierten Antigen Her2/neu sowie CTLA4-Her2/neu ausgestattet. Nach erfolgter Insertion der Transgene in das Genom der VSV Deletionsmutanten wurden die rekombinanten Vektoren erfolgreich hergestellt und die Expression der von srVSV kodierten Transgene wurde in vitro nachgewiesen. Da VSV sensitiv gegenüber Typ I Interferon (IFN)-induzierten antiviralen Immunantworten ist, wurde zur Identifikation eines geeigneten Tumormodells für die präklinischen Studien, die Sensitivität verschiedener muriner Tumorzelllinien gegenüber IFNα untersucht. Die Darmkrebszelllinie MC38 wurde als potenziell geeignetes Tumormodell identifiziert, da sie auch nach Vorbehandlung mit hohen IFNα Konzentrationen noch infizierbar war. Erste präklinische Untersuchungen zeigten, dass sowohl srVSV, welches mit immunstimulierenden Transgenen armiert war, als auch nicht-armiertes srVSV eine antitumorale Immunantwort im MC38 Tumormodell induzieren konnten. Hierbei zeigten die mit immunstimulatorischen Transgen-armierten srVSV lediglich eine geringfügige Steigerung der therapeutischen Wirksamkeit im Vergleich zu der nicht-armierten srVSV-Kontrollgruppe. Daher sind weitere präklinische Studien notwendig, um endgültig zu klären, ob der Einbau der gewählten immuntherapeutischen Transgene die antitumorale Wirksamkeit von srVSV steigern kann.
Monoklonale Antikörper, welche gegen Immuncheckpoints wie programmed cell death protein-1 (PD-1) oder seinen Liganden PD-L1 gerichtet sind, haben vielversprechende Behandlungsergebnisse bei fortgeschrittenen Krebserkrankungen erzielt, was zur Markteinführung verschiedener sogenannter Immuncheckpoint-Inhibitoren führte. Jedoch spricht nicht jeder Patient auf die Behandlung an und zudem können als Nebenwirkung schwerwiegende Autoimmunreaktionen auftreten. Vermutlich begünstigt die systemische Applikation der Antikörper nicht nur eine Stimulation des Immunsystems im Tumorgewebe, sondern auch in gesunden Organen. Daher wurden in dieser Arbeit zielgerichtete AAV-Vektoren für den tumorspezifischen Transfer von Immuncheckpoint-Inhibitoren entwickelt. Hierfür wurden AAV-Vektoren verwendet, die über die Bindung an den Rezeptor Her2/neu, welcher auf vielen Tumorentitäten hochreguliert wird, den Gentransfer vermitteln (Her2-AAV). Diese Vektoren wurden mit der kodierenden Sequenz für PD-1- oder PD-L1-spezifische Inhibitoren ausgestattet. In vitro Untersuchungen bestätigten die AAV-vermittelte Expression der Immuncheckpoint-Inhibitoren sowie deren spezifischen Anbindung an ihr Zielantigen PD-1 oder PD-L1. In vivo Imaging Analysen zeigten, dass Her2-AAV nach systemischer Applikation in immunkompetenten BALB/c Mäusen mit subkutan wachsenden HER2/neu-positiven RENCA Tumoren einen präzisen Gentransfer in das Tumorgewebe vermittelte, wohingegen ungerichtete AAV2-Vektoren einen Gentransfer in die Leber vermittelten. Zuletzt wurde die AAV-vermittelte Expression von αPD-1 in dem zuvor genannten Tumormodell untersucht. Die systemische Applikation von Her2-AAV führte zu erhöhten αPD-1 Werten im Tumor verglichen zu den Werten in der Leber. Im Gegensatz dazu wiesen die mit AAV2 behandelten Mäuse höhere αPD-1 Werte in der Leber auf. Zusammenfassend zeigt die vorliegende Arbeit, dass sich Her2-AAV für den tumor-gerichteten Transfer von Immuncheckpoint-Inhibitoren eignet. Die in dieser Arbeit entwickelten AAV-Vektoren liefern die Grundlage, auf der weiterführende Studien durchgeführt werden können, um letztendlich die Sicherheit und Wirksamkeit von Vektor-vermittelter mit systemischer Immuncheckpoint-Blockade vergleichen zu können. | Deutsch |
|
URN: |
urn:nbn:de:tuda-tuprints-83320 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): |
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie |
Fachbereich(e)/-gebiet(e): |
10 Fachbereich Biologie |
Hinterlegungsdatum: |
27 Jan 2019 20:55 |
Letzte Änderung: |
27 Jan 2019 20:55 |
PPN: |
|
Referenten: |
Süß, Prof. Dr. Beatrix ; Thiel, Prof. Dr. Gerhard ; Buchholz, Prof. Dr. Christian |
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: |
24 Januar 2018 |
Export: |
|
Suche nach Titel in: |
TUfind oder in Google |
|
Frage zum Eintrag |
Optionen (nur für Redakteure)
|
Redaktionelle Details anzeigen |