TU Darmstadt / ULB / TUbiblio

Context in Synthetic Biology: Memory Effects of Environments with Mono-molecular Reactions

Falk, J. ; Bronstein, L. ; Hanst, M. ; Drossel, B. ; Koeppl, H. (2019)
Context in Synthetic Biology: Memory Effects of Environments with Mono-molecular Reactions.
In: The Journal of Chemical Physics, 150 (2)
doi: 10.1063/1.5053816
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Synthetic biology aims at designing modular genetic circuits that can be assembled according to the desired function. When embedded in a cell, a circuit module becomes a small subnetwork within a larger environmental network, and its dynamics is therefore affected by potentially unknown interactions with the environment. It is well-known that the presence of the environment not only causes extrinsic noise but also memory effects, which means that the dynamics of the subnetwork is affected by its past states via a memory function that is characteristic of the environment. We study several generic scenarios for the coupling between a small module and a larger environment, with the environment consisting of a chain of mono-molecular reactions. By mapping the dynamics of this coupled system onto random walks, we are able to give exact analytical expressions for the arising memory functions. Hence, our results give insights into the possible types of memory functions and thereby help to better predict subnetwork dynamics.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Falk, J. ; Bronstein, L. ; Hanst, M. ; Drossel, B. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Context in Synthetic Biology: Memory Effects of Environments with Mono-molecular Reactions
Sprache: Englisch
Publikationsjahr: 10 Januar 2019
Verlag: American Institute of Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Journal of Chemical Physics
Jahrgang/Volume einer Zeitschrift: 150
(Heft-)Nummer: 2
DOI: 10.1063/1.5053816
URL / URN: https://aip.scitation.org/doi/10.1063/1.5053816
Kurzbeschreibung (Abstract):

Synthetic biology aims at designing modular genetic circuits that can be assembled according to the desired function. When embedded in a cell, a circuit module becomes a small subnetwork within a larger environmental network, and its dynamics is therefore affected by potentially unknown interactions with the environment. It is well-known that the presence of the environment not only causes extrinsic noise but also memory effects, which means that the dynamics of the subnetwork is affected by its past states via a memory function that is characteristic of the environment. We study several generic scenarios for the coupling between a small module and a larger environment, with the environment consisting of a chain of mono-molecular reactions. By mapping the dynamics of this coupled system onto random walks, we are able to give exact analytical expressions for the arising memory functions. Hence, our results give insights into the possible types of memory functions and thereby help to better predict subnetwork dynamics.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
05 Fachbereich Physik
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM))
05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Statistische Physik und komplexe Systeme
Hinterlegungsdatum: 22 Jan 2019 11:39
Letzte Änderung: 23 Sep 2021 14:30
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen