TU Darmstadt / ULB / TUbiblio

Algorithms and Position Optimization for a Decentralized Localization Platform Based on Resource-Constrained Devices

Kasmi, Zakaria ; Guerchali, Naouar ; Norrdine, Abdelmoumen ; Schiller, Jochen (2018)
Algorithms and Position Optimization for a Decentralized Localization Platform Based on Resource-Constrained Devices.
In: IEEE Transactions on mobile computing, 18 (8)
doi: 10.1109/TMC.2018.2868930
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

As a step towards ubiquitous and mobile computing, a decentralized localization platform allows positioning for objects and persons. The decentralized computation of the position enables to shift the application-level knowledge into a Mobile Station (MS) and avoids the communication with a remote device such as a server. In addition, computing a position on resource-constrained devices is challenging due to the restricted storage, computing capacity and power supply. Therefore, we propose suitable algorithms to compute unoptimized as well as optimized positions on resource-limited MSs. Algorithms for unoptimized positions will be analyzed with respect to the stability, complexity, and memory requirements. The calculated positions are optimized by using the Gauss--Newton (GNM) or Levenberg--Marquardt methods (LVMs). We analyze and compare the GNM with two variants of the LVM algorithm. Furthermore, we develop an adaptive algorithm for the position optimization, which is based on the Singular Value Decomposition (SVD), LVM algorithm, and the Dilution of Precision. This method allows an adaptive selection mechanism for the LVM algorithm. The influence and choice of the right parameter combination of the LVM algorithm will be analyzed and discussed. Finally, we design and evaluate a method to reduce multipath errors on the MS.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Kasmi, Zakaria ; Guerchali, Naouar ; Norrdine, Abdelmoumen ; Schiller, Jochen
Art des Eintrags: Bibliographie
Titel: Algorithms and Position Optimization for a Decentralized Localization Platform Based on Resource-Constrained Devices
Sprache: Englisch
Publikationsjahr: 2018
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on mobile computing
Jahrgang/Volume einer Zeitschrift: 18
(Heft-)Nummer: 8
DOI: 10.1109/TMC.2018.2868930
Kurzbeschreibung (Abstract):

As a step towards ubiquitous and mobile computing, a decentralized localization platform allows positioning for objects and persons. The decentralized computation of the position enables to shift the application-level knowledge into a Mobile Station (MS) and avoids the communication with a remote device such as a server. In addition, computing a position on resource-constrained devices is challenging due to the restricted storage, computing capacity and power supply. Therefore, we propose suitable algorithms to compute unoptimized as well as optimized positions on resource-limited MSs. Algorithms for unoptimized positions will be analyzed with respect to the stability, complexity, and memory requirements. The calculated positions are optimized by using the Gauss--Newton (GNM) or Levenberg--Marquardt methods (LVMs). We analyze and compare the GNM with two variants of the LVM algorithm. Furthermore, we develop an adaptive algorithm for the position optimization, which is based on the Singular Value Decomposition (SVD), LVM algorithm, and the Dilution of Precision. This method allows an adaptive selection mechanism for the LVM algorithm. The influence and choice of the right parameter combination of the LVM algorithm will be analyzed and discussed. Finally, we design and evaluate a method to reduce multipath errors on the MS.

Freie Schlagworte: Robot sensing systems, Mobile computing, Smart phones, Optimization, Global Positioning System, Memory management
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Baubetrieb
Hinterlegungsdatum: 08 Jan 2019 11:51
Letzte Änderung: 07 Jan 2021 19:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen