TU Darmstadt / ULB / TUbiblio

Subspace-based algorithm for distance networks

Norrdine, Abdelmoumen (2018)
Subspace-based algorithm for distance networks.
In: Journal of Applied Geodesy, 12 (3)
doi: 10.1515/jag-2018-0003
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

A three-dimensional distance network is composed of a system of points or nodes located on earth’s surface or in space, in a building or in a construction site. Localization of these nodes is a fundamental operation in geodetic and sensor networks. This paper shows a new method for calculating n-dimensional dynamic distance networks, whereas a spectral decomposition of a symmetric matrix of squared distances is used. Thereby neither approximation, nor iterative solutions are used. By using this method, fixed reference points can be selected as well as noisy distances can be denoised and checked for consistency. Given a realistic scenario, Monte-Carlo simulations show that the proposed method always converge to an optimal solution with less computation time than numerically optimized Levenberg-Marquandt method.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Norrdine, Abdelmoumen
Art des Eintrags: Bibliographie
Titel: Subspace-based algorithm for distance networks
Sprache: Englisch
Publikationsjahr: 3 Mai 2018
Verlag: DeGruyter
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Geodesy
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 3
DOI: 10.1515/jag-2018-0003
URL / URN: https://doi.org/10.1515/jag-2018-0003
Kurzbeschreibung (Abstract):

A three-dimensional distance network is composed of a system of points or nodes located on earth’s surface or in space, in a building or in a construction site. Localization of these nodes is a fundamental operation in geodetic and sensor networks. This paper shows a new method for calculating n-dimensional dynamic distance networks, whereas a spectral decomposition of a symmetric matrix of squared distances is used. Thereby neither approximation, nor iterative solutions are used. By using this method, fixed reference points can be selected as well as noisy distances can be denoised and checked for consistency. Given a realistic scenario, Monte-Carlo simulations show that the proposed method always converge to an optimal solution with less computation time than numerically optimized Levenberg-Marquandt method.

Freie Schlagworte: graph algorithms; rigid graphs; EDM; collaborative localization; sensor networks; Indoor positioning; Ultra Wideband localization; SVD
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Baubetrieb
Hinterlegungsdatum: 08 Jan 2019 10:49
Letzte Änderung: 07 Jan 2021 19:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen